DC FieldValueLanguage
dc.contributor.authorAntunes, Pedro R. S.-
dc.contributor.authorMohammadi, Seyyed Abbas-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2019-07-19T09:42:20Z-
dc.date.available2019-07-19T09:42:20Z-
dc.date.issued2018-04-
dc.identifier.citationNonlinear Analysis: Real World Applications (40): 307-327 (2018-04)de_DE
dc.identifier.issn1468-1218de_DE
dc.identifier.urihttp://hdl.handle.net/11420/2996-
dc.description.abstractIn this paper we study the following optimal shape design problem: Given an open connected set Ω⊂RN and a positive number A∈(0,|Ω|), find a measurable subset D⊂Ω with |D|=A such that the minimal eigenvalue of −div(ζ(λ,x)∇u)+αχDu=λu in Ω, u=0 on ∂Ω, is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution and we determine some qualitative aspects of the optimal configurations. For instance, we can get a nearly optimal set which is an approximation of the minimizer in ultra-high contrast regime. A numerical algorithm is proposed to obtain an approximate description of the optimizer.en
dc.language.isoende_DE
dc.relation.ispartofNonlinear analysisde_DE
dc.titleA nonlinear eigenvalue optimization problem: Optimal potential functionsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishIn this paper we study the following optimal shape design problem: Given an open connected set Ω⊂RN and a positive number A∈(0,|Ω|), find a measurable subset D⊂Ω with |D|=A such that the minimal eigenvalue of −div(ζ(λ,x)∇u)+αχDu=λu in Ω, u=0 on ∂Ω, is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution and we determine some qualitative aspects of the optimal configurations. For instance, we can get a nearly optimal set which is an approximation of the minimizer in ultra-high contrast regime. A numerical algorithm is proposed to obtain an approximate description of the optimizer.de_DE
tuhh.publisher.doi10.1016/j.nonrwa.2017.09.003-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume40de_DE
tuhh.container.startpage307de_DE
tuhh.container.endpage327de_DE
dc.identifier.scopus2-s2.0-85031014227-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidAntunes, Pedro R. S.-
item.creatorOrcidMohammadi, Seyyed Abbas-
item.creatorOrcidVoß, Heinrich-
item.creatorGNDAntunes, Pedro R. S.-
item.creatorGNDMohammadi, Seyyed Abbas-
item.creatorGNDVoß, Heinrich-
item.openairetypeArticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-3339-4929-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

145
Last Week
1
Last month
2
checked on Nov 30, 2022

SCOPUSTM   
Citations

6
Last Week
0
Last month
1
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.