Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.303
Fulltext available Open Access
Title: Polynomial minimum root separation
Language: English
Authors: Rump, Siegfried M. 
Issue Date: 1979
Source: Mathematics of computation 33 (1979) 145, 327-36
Abstract (english): The minimum root separation of an arbitrary polynomial P is defined as the minimum of the distances between distinct (real or complex) roots of P. Some asymptotically good lower bounds for the root separation of p are given, where P may have multiple zeros. There are applications in the analysis of complexity of algorithms and in the theory of algebraic and transcendental numbers.
URI: http://tubdok.tub.tuhh.de/handle/11420/305
DOI: 10.15480/882.303
Institute: Zuverlässiges Rechnen E-19 
Type: (wissenschaftlicher) Artikel
License: http://doku.b.tu-harburg.de/doku/lic_ohne_pod.php
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
Ru79.pdf1,16 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

452
Last Week
0
Last month
9
checked on Sep 30, 2020

Download(s)

237
checked on Sep 30, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.