TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Feasibility of cosmic object detection using an X-ray FSR system
 
Options

Feasibility of cosmic object detection using an X-ray FSR system

Publikationstyp
Conference Paper
Date Issued
2019-06
Sprache
English
Author(s)
Kabakchiev, Hristo  
Behar, Vera  
Garvanov, Iwan  
Kabakchieva, Dorina  
Kabakchiev, Avgust  
Rohling, Hermann  
Bentum, Marc  
Fernandes, Jorge  
Institut
Nachrichtentechnik E-8  
TORE-URI
http://hdl.handle.net/11420/3096
Article Number
8768195
Citation
Proceedings International Radar Symposium (2019-June): 8768195 (2019-06)
Contribution to Conference
20th International Radar Symposium (IRS 2019)  
Publisher DOI
10.23919/IRS.2019.8768195
Scopus ID
2-s2.0-85069929600
Publisher
IEEE
ISBN
978-3-7369-9860-5
978-1-7281-0421-8
978-3-7369-9904-6
The feasibility of an X-ray Forward Scatter Radar (FSR) system, which exploits X-ray pulsars as opportunity transmitters, is examined. We provide a power budget estimate for detection of large cosmic objects using such a FSR system and assume the use of the high-resolution X-ray telescopes mounted on a satellite as the receivers. The numerical results are obtained for three types of pulsars and small asteroids, whose diameters equal and overcome 50m.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback