Verlagslink DOI: 10.1007/s11082-018-1349-8
Titel: Comparison of thermodynamically consistent charge carrier flux discretizations for Fermi–Dirac and Gauss–Fermi statistics
Sprache: Englisch
Autor/Autorin: Farrell, Patricio 
Patriarca, Matteo 
Fuhrmann, Jürgen 
Koprucki, Thomas 
Erscheinungs­datum: 1-Feb-2018
Quellenangabe: Optical and Quantum Electronics 2 (50): 101 (2018-02-01)
Zusammenfassung (englisch): 
We compare three thermodynamically consistent Scharfetter–Gummel schemes for different distribution functions for the carrier densities, including the Fermi–Dirac integral of order 1/2 and the Gauss–Fermi integral. The most accurate (but unfortunately also most costly) generalized Scharfetter–Gummel scheme requires the solution of an integral equation. Since one cannot solve this integral equation analytically, several modified Scharfetter–Gummel schemes have been proposed, yielding explicit flux approximations to the implicit generalized flux. The two state-of-the-art modified fluxes used in device simulation software are the diffusion-enhanced flux and the inverse activity coefficient averaging flux. We would like to study which of these two modified schemes approximates the implicit flux better. To achieve this, we propose a new method to solve the integral equation numerically based on Gauss quadrature and Newton’s method. This numerical procedure provides a highly accurate reference flux, enabling us to compare the quality of the two modified Scharfetter–Gummel schemes. We extend previous results (Farrell in J Comput Phys 346:497–513, 2017a) showing that the diffusion-enhanced ansatz leads to considerably lower flux errors for the Blakemore approximation to the physically more relevant Fermi–Dirac and Gauss–Fermi statistics.
URI: http://hdl.handle.net/11420/3128
ISSN: 0306-8919
Zeitschrift: Optical and quantum electronics 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

118
Letzte Woche
1
Letzten Monat
1
checked on 06.10.2022

SCOPUSTM   
Zitate

6
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.