DC FieldValueLanguage
dc.contributor.authorFarrell, Patricio-
dc.contributor.authorPatriarca, Matteo-
dc.contributor.authorFuhrmann, Jürgen-
dc.contributor.authorKoprucki, Thomas-
dc.date.accessioned2019-08-19T10:35:02Z-
dc.date.available2019-08-19T10:35:02Z-
dc.date.issued2018-02-01-
dc.identifier.citationOptical and Quantum Electronics 2 (50): 101 (2018-02-01)de_DE
dc.identifier.issn0306-8919de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3128-
dc.description.abstractWe compare three thermodynamically consistent Scharfetter–Gummel schemes for different distribution functions for the carrier densities, including the Fermi–Dirac integral of order 1/2 and the Gauss–Fermi integral. The most accurate (but unfortunately also most costly) generalized Scharfetter–Gummel scheme requires the solution of an integral equation. Since one cannot solve this integral equation analytically, several modified Scharfetter–Gummel schemes have been proposed, yielding explicit flux approximations to the implicit generalized flux. The two state-of-the-art modified fluxes used in device simulation software are the diffusion-enhanced flux and the inverse activity coefficient averaging flux. We would like to study which of these two modified schemes approximates the implicit flux better. To achieve this, we propose a new method to solve the integral equation numerically based on Gauss quadrature and Newton’s method. This numerical procedure provides a highly accurate reference flux, enabling us to compare the quality of the two modified Scharfetter–Gummel schemes. We extend previous results (Farrell in J Comput Phys 346:497–513, 2017a) showing that the diffusion-enhanced ansatz leads to considerably lower flux errors for the Blakemore approximation to the physically more relevant Fermi–Dirac and Gauss–Fermi statistics.en
dc.language.isoende_DE
dc.relation.ispartofOptical and quantum electronicsde_DE
dc.titleComparison of thermodynamically consistent charge carrier flux discretizations for Fermi–Dirac and Gauss–Fermi statisticsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishWe compare three thermodynamically consistent Scharfetter–Gummel schemes for different distribution functions for the carrier densities, including the Fermi–Dirac integral of order 1/2 and the Gauss–Fermi integral. The most accurate (but unfortunately also most costly) generalized Scharfetter–Gummel scheme requires the solution of an integral equation. Since one cannot solve this integral equation analytically, several modified Scharfetter–Gummel schemes have been proposed, yielding explicit flux approximations to the implicit generalized flux. The two state-of-the-art modified fluxes used in device simulation software are the diffusion-enhanced flux and the inverse activity coefficient averaging flux. We would like to study which of these two modified schemes approximates the implicit flux better. To achieve this, we propose a new method to solve the integral equation numerically based on Gauss quadrature and Newton’s method. This numerical procedure provides a highly accurate reference flux, enabling us to compare the quality of the two modified Scharfetter–Gummel schemes. We extend previous results (Farrell in J Comput Phys 346:497–513, 2017a) showing that the diffusion-enhanced ansatz leads to considerably lower flux errors for the Blakemore approximation to the physically more relevant Fermi–Dirac and Gauss–Fermi statistics.de_DE
tuhh.publisher.doi10.1007/s11082-018-1349-8-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue2de_DE
tuhh.container.volume50de_DE
dc.identifier.scopus2-s2.0-85041494240-
tuhh.container.articlenumber101de_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.creatorOrcidFarrell, Patricio-
item.creatorOrcidPatriarca, Matteo-
item.creatorOrcidFuhrmann, Jürgen-
item.creatorOrcidKoprucki, Thomas-
item.languageiso639-1en-
item.creatorGNDFarrell, Patricio-
item.creatorGNDPatriarca, Matteo-
item.creatorGNDFuhrmann, Jürgen-
item.creatorGNDKoprucki, Thomas-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9969-6615-
crisitem.author.orcid0000-0003-1477-8270-
crisitem.author.orcid0000-0003-4432-2434-
crisitem.author.orcid0000-0001-6235-9412-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

126
Last Week
1
Last month
1
checked on Dec 5, 2022

SCOPUSTM   
Citations

6
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.