TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Enzyme- and metal-catalyzed synthesis of a new biobased polyester
 
Options

Enzyme- and metal-catalyzed synthesis of a new biobased polyester

Publikationstyp
Journal Article
Date Issued
2017-08-09
Sprache
English
Author(s)
Gebhard, Jakob  
Neuer, Björn  
Luinstra, Gerrit A.  
Liese, Andreas  orcid-logo
Institut
Technische Biokatalyse V-6  
TORE-URI
http://hdl.handle.net/11420/3165
Journal
Organic process research & development  
Volume
21
Issue
9
Start Page
1245
End Page
1252
Citation
Organic Process Research and Development 9 (21): 1245-1252 (2017-09-15)
Publisher DOI
10.1021/acs.oprd.6b00418
Scopus ID
2-s2.0-85029513898
Publisher
American Chemical Society
Linear aliphatic polyesters were prepared from Pripol 1012, a diacidic C18 fatty acid dimer, and 1,3-propanediol employing a lipase or a titanium tetrabutanoate. Metal-based catalysis (route M) was carried out with a precondensation at 180 °C and 600 mbar followed by a final condensation at 220 °C and 0.3-0.6 mbar. Enzyme catalysis was carried out with an immobilized Candida antarctica lipase B after either a precondensation step at 180 °C and 600 mbar (route E1) or 80 °C and 100 mbar (route E2) and a final condensation at 80 °C and 0.3-0.6 mbar. Polyesters were obtained along routes M, E1, and E2 with weight-average molecular weights, Mw, at final conversion of 84.6, 26.7, and 15.6 kg mol-1, respectively. The final molecular weight via route E2 was most probably constrained by depletion of 1,3-propanediol during precondensation. Rheological measurements of the polyesters in melt revealed a Newtonian-like behavior at 80 °C. The dynamic viscosities fulfill the Cox-Merz rule. The power law for the viscosity as a function of Mw possesses an exponent of 3.7 ± 0.2. A polyesterdiol of Mn ≈ 6 kDa prepared along route M was used in the synthesis of a polyurethane elastomer with a Young modulus of 2.5 MPa, an elongation at break of 554%, an ultimate tensile strength of 3.5 MPa, and a Shore A hardness of 38.
DDC Class
540: Chemie
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback