Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2398
DC FieldValueLanguage
dc.contributor.authorDahl, Gregor Thomas-
dc.contributor.authorDöring, Sebastian-
dc.contributor.authorKrekeler, Tobias-
dc.contributor.authorJanßen, Rolf-
dc.contributor.authorRitter, Martin-
dc.contributor.authorWeller, Horst-
dc.contributor.authorVossmeyer, Tobias-
dc.date.accessioned2019-09-06T12:13:40Z-
dc.date.available2019-09-06T12:13:40Z-
dc.date.issued2019-09-05-
dc.identifierdoi: 10.3390/ma12182856-
dc.identifier.citationMaterials 12 (18): 2856 (2019)de_DE
dc.identifier.issn1996-1944de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3325-
dc.description.abstractZirconia nanoceramics are interesting materials for numerous high-temperature applications. Because their beneficial properties are mainly governed by the crystal and microstructure, it is essential to understand and control these features. The use of co-stabilizing agents in the sol-gel synthesis of zirconia submicro-particles should provide an effective tool for adjusting the particles’ size and shape. Furthermore, alumina-doping is expected to enhance the particles’ size and shape persistence at high temperatures, similar to what is observed in corresponding bulk ceramics. Dispersed alumina should inhibit grain growth by forming diffusion barriers, additionally impeding the martensitic phase transformation in zirconia grains. Here, alumina-doped zirconia particles with sphere-like shape and average diameters of 300 nm were synthesized using a modified sol-gel route employing icosanoic acid and hydroxypropyl cellulose as stabilizing agents. The particles were annealed at temperatures between 800 and 1200 degree Celsius and characterized by electron microscopy, elemental analysis, and X-ray diffraction. Complementary elemental analyses confirmed the precise control over the alumina content (0–50 mol%) in the final product. Annealed alumina-doped particles showed more pronounced shape persistence after annealing at 1000 degree Celsius than undoped particles. Quantitative phase analyses revealed an increased stabilization of the tetragonal/cubic zirconia phase and a reduced grain growth with increasing alumina content. Elemental mapping indicated pronounced alumina segregation near the grain boundaries during annealing.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde_DE
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofMaterialsde_DE
dc.rightsCC BY 4.0de_DE
dc.subject.ddc540: Chemiede_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleAlumina-doped zirconia submicro-particles : synthesis, thermal stability, and microstructural characterizationde_DE
dc.typeArticlede_DE
dc.date.updated2019-09-06T10:07:13Z-
dc.identifier.urnurn:nbn:de:gbv:830-882.048243-
dc.identifier.doi10.15480/882.2398-
dc.type.diniarticle-
dc.subject.ddccode540-
dc.subject.ddccode600-
dc.subject.ddccode620-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.048243-
tuhh.oai.showtruede_DE
tuhh.abstract.englishZirconia nanoceramics are interesting materials for numerous high-temperature applications. Because their beneficial properties are mainly governed by the crystal and microstructure, it is essential to understand and control these features. The use of co-stabilizing agents in the sol-gel synthesis of zirconia submicro-particles should provide an effective tool for adjusting the particles’ size and shape. Furthermore, alumina-doping is expected to enhance the particles’ size and shape persistence at high temperatures, similar to what is observed in corresponding bulk ceramics. Dispersed alumina should inhibit grain growth by forming diffusion barriers, additionally impeding the martensitic phase transformation in zirconia grains. Here, alumina-doped zirconia particles with sphere-like shape and average diameters of 300 nm were synthesized using a modified sol-gel route employing icosanoic acid and hydroxypropyl cellulose as stabilizing agents. The particles were annealed at temperatures between 800 and 1200 degree Celsius and characterized by electron microscopy, elemental analysis, and X-ray diffraction. Complementary elemental analyses confirmed the precise control over the alumina content (0–50 mol%) in the final product. Annealed alumina-doped particles showed more pronounced shape persistence after annealing at 1000 degree Celsius than undoped particles. Quantitative phase analyses revealed an increased stabilization of the tetragonal/cubic zirconia phase and a reduced grain growth with increasing alumina content. Elemental mapping indicated pronounced alumina segregation near the grain boundaries during annealing.de_DE
tuhh.publisher.doi10.3390/ma12182856-
tuhh.publication.instituteBetriebseinheit Elektronenmikroskopie M-26de_DE
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.2398-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanKeramische Hochleistungswerkstoffe M-9de
tuhh.institute.englishKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue18de_DE
tuhh.container.volume12de_DE
dc.relation.project192346071de_DE
dc.relation.projectSFB 986de_DE
dc.relation.projectSFB 986 (projects C6, Z3, C5, A1)de_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber2856de_DE
item.languageiso639-1other-
item.creatorOrcidDahl, Gregor Thomas-
item.creatorOrcidDöring, Sebastian-
item.creatorOrcidKrekeler, Tobias-
item.creatorOrcidJanßen, Rolf-
item.creatorOrcidRitter, Martin-
item.creatorOrcidWeller, Horst-
item.creatorOrcidVossmeyer, Tobias-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.creatorGNDDahl, Gregor Thomas-
item.creatorGNDDöring, Sebastian-
item.creatorGNDKrekeler, Tobias-
item.creatorGNDJanßen, Rolf-
item.creatorGNDRitter, Martin-
item.creatorGNDWeller, Horst-
item.creatorGNDVossmeyer, Tobias-
crisitem.author.deptBetriebseinheit Elektronenmikroskopie M-26-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptBetriebseinheit Elektronenmikroskopie M-26-
crisitem.author.orcid0000-0003-2299-9639-
crisitem.author.orcid0000-0001-7054-0510-
crisitem.author.orcid0000-0002-5664-859X-
crisitem.author.orcid0000-0001-9738-3826-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext (tub.dok)
Files in This Item:
File Description SizeFormat
materials-12-02856.pdf1,45 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

56
Last Week
25
Last month
checked on Sep 21, 2019

Download(s)

22
checked on Sep 21, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons