TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Lower Bounds for the Smallest Singular Value of Certain Toeplitz-like Triangular Matrices with Linearly Increasing Diagonal Entries
 
Options

Lower Bounds for the Smallest Singular Value of Certain Toeplitz-like Triangular Matrices with Linearly Increasing Diagonal Entries

Publikationstyp
Journal Article
Date Issued
2019-10
Sprache
English
Author(s)
Bünger, Florian  
Rump, Siegfried M.  orcid-logo
Institut
Zuverlässiges Rechnen E-19  
TORE-URI
http://hdl.handle.net/11420/3366
Journal
Integral equations and operator theory  
Volume
91
Issue
5
Article Number
39
Citation
Integral Equations and Operator Theory 5 (91) : 39 (2019-10)
Publisher DOI
10.1007/s00020-019-2537-z
Scopus ID
2-s2.0-85071737065
Let L be a lower triangular n× n-Toeplitz matrix with first column (μ, α, β, α, β, … ) T, where μ, α, β≥ 0 fulfill α- β∈ [ 0 , 1 ) and α∈ [ 1 , μ+ 3 ]. Furthermore let D be the diagonal matrix with diagonal entries 1 , 2 , … , n. We prove that the smallest singular value of the matrix A: = L+ D is bounded from below by a constant ω= ω(μ, α, β) > 0 which is independent of the dimension n.
Subjects
Frobenius norm
Infinite-dimensional matrix
Minimum singular value
Toeplitz-like triangular matrices
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback