DC FieldValueLanguage
dc.contributor.authorLe Borne, Sabine-
dc.contributor.authorWende, Michael-
dc.date.accessioned2019-09-18T14:42:09Z-
dc.date.available2019-09-18T14:42:09Z-
dc.date.issued2019-
dc.identifier.citationSIAM Journal on Scientific Computing 3 (41): A1706-A1732 (2019)de_DE
dc.identifier.issn1064-8275de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3379-
dc.description.abstractScattered data interpolation using conditionally positive definite radial basis functions typically leads to large, dense, and indefinite systems of saddle-point type. Due to ill-conditioning, the iterative solution of these systems requires an effective preconditioner. Using the technique of H -matrices, we propose, analyze, and compare two preconditioning approaches: transformation of the indefinite into a positive definite system using either Lagrangian augmentation or the nullspace method combined with subsequent H -Cholesky preconditioning. Numerical tests support the theoretical condition number estimates and illustrate the performance of the proposed preconditioners which are suitable for problems with up to N ≈ 40000 centers in two or three spatial dimensions.en
dc.language.isoende_DE
dc.relation.ispartofSIAM journal on scientific computingde_DE
dc.subjectHierarchical matricesde_DE
dc.subjectPreconditioningde_DE
dc.subjectRadial basis functionde_DE
dc.subjectSaddle-point systemsde_DE
dc.subjectScattered data interpolationde_DE
dc.titleIterative solution of saddle-point systems from radial basis function (RBF) interpolationde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishScattered data interpolation using conditionally positive definite radial basis functions typically leads to large, dense, and indefinite systems of saddle-point type. Due to ill-conditioning, the iterative solution of these systems requires an effective preconditioner. Using the technique of H -matrices, we propose, analyze, and compare two preconditioning approaches: transformation of the indefinite into a positive definite system using either Lagrangian augmentation or the nullspace method combined with subsequent H -Cholesky preconditioning. Numerical tests support the theoretical condition number estimates and illustrate the performance of the proposed preconditioners which are suitable for problems with up to N ≈ 40000 centers in two or three spatial dimensions.de_DE
tuhh.publisher.doi10.1137/18M119063X-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume41de_DE
tuhh.container.startpageA1706de_DE
tuhh.container.endpageA1732de_DE
dc.identifier.scopus2-s2.0-85071891454-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLe Borne, Sabine-
item.creatorGNDWende, Michael-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLe Borne, Sabine-
item.creatorOrcidWende, Michael-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

126
Last Week
2
Last month
0
checked on Aug 17, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.