DC FieldValueLanguage
dc.contributor.authorCencha, Luisa G.-
dc.contributor.authorHuber, Patrick-
dc.contributor.authorKappl, Michael-
dc.contributor.authorFloudas, George-
dc.contributor.authorSteinhart, Martin-
dc.contributor.authorBerli, Claudio L. A.-
dc.contributor.authorUrteaga, Raul-
dc.date.accessioned2019-09-23T16:10:31Z-
dc.date.available2019-09-23T16:10:31Z-
dc.date.issued2019-09-09-
dc.identifier.citationApplied Physics Letters 11 (115): 113701 (2019-09-09)de_DE
dc.identifier.issn1077-3118de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3405-
dc.description.abstractA fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.en
dc.language.isoende_DE
dc.relation.ispartofApplied physics lettersde_DE
dc.subject.ddc000: Allgemeines, Wissenschaftde_DE
dc.titleNondestructive high-throughput screening of nanopore geometry in porous membranes by imbibitionde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishA fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.de_DE
tuhh.publisher.doi10.1063/1.5119338-
tuhh.publication.instituteWerkstoffphysik und -technologie M-22de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanWerkstoffphysik und -technologie M-22de
tuhh.institute.englishWerkstoffphysik und -technologie M-22de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue11de_DE
tuhh.container.volume115de_DE
dc.relation.projectSFB 986, Teilproject B7 - Polymere in grenzflächenbestimmten Geometrien: Struktur, Dynamik und Funktion an planaren und in porösen Hybridsystemende_DE
tuhh.container.articlenumber113701de_DE
local.status.inpressfalsede_DE
item.creatorGNDCencha, Luisa G.-
item.creatorGNDHuber, Patrick-
item.creatorGNDKappl, Michael-
item.creatorGNDFloudas, George-
item.creatorGNDSteinhart, Martin-
item.creatorGNDBerli, Claudio L. A.-
item.creatorGNDUrteaga, Raul-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.creatorOrcidCencha, Luisa G.-
item.creatorOrcidHuber, Patrick-
item.creatorOrcidKappl, Michael-
item.creatorOrcidFloudas, George-
item.creatorOrcidSteinhart, Martin-
item.creatorOrcidBerli, Claudio L. A.-
item.creatorOrcidUrteaga, Raul-
crisitem.author.deptWerkstoffphysik und -technologie M-22-
crisitem.author.orcid0000-0003-2858-6827-
crisitem.author.orcid0000-0002-2126-9100-
crisitem.author.orcid0000-0003-4629-3817-
crisitem.author.orcid0000-0003-4629-3817-
crisitem.author.orcid0000-0002-5241-8498-
crisitem.author.orcid0000-0003-3206-2700-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.project.funderDeutsche Forschungsgemeinschaft (DFG)-
crisitem.project.funderid501100001659-
crisitem.project.funderrorid018mejw64-
crisitem.project.grantno192346071-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

62
Last Week
0
Last month
0
checked on Oct 28, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.