Verlagslink DOI: 10.1016/j.compchemeng.2017.03.018
Titel: Estimation of aggregation kernels based on Laurent polynomial approximation
Sprache: Englisch
Autor/Autorin: Eisenschmidt, Holger 
Soumaya, M. 
Bajcinca, N. 
Le Borne, Sabine  
Sundmacher, Kai 
Schlagwörter: Aggregation; Aggregation kernel; Inverse methods; Polynomial approximation
Erscheinungs­datum: 2017
Quellenangabe: Computers and Chemical Engineering (103): 210-217 (2017)
Zusammenfassung (englisch): 
The dynamics of particulate processes can be described by population balance equations which are governed by the phenomena of growth, nucleation, aggregation and breakage. Estimating the kinetics of the latter phenomena is a major challenge particularly for particle aggregation because first principle models are rarely available and the kernel estimation from measured population density data constitutes an ill-conditioned problem. In this work we demonstrate the estimation of aggregation kernels from experimental data using an inverse problem approach. This approach is based on the approximation of the aggregation kernel by use of Laurent polynomials. We show that the aggregation kernel can be well estimated from in silico data and that the estimation results are robust against substantial measurement noise. The method is demonstrated for three different aggregation kernels. Good agreement between true and estimated kernels was found in all investigated cases.
URI: http://hdl.handle.net/11420/3414
ISSN: 0098-1354
Zeitschrift: Computers & chemical engineering 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Projekt: SPP 1679: Teilprojekt "Numerische Lösungsverfahren für gekoppelte Populationsbilanzsysteme zur dynamischen Simulation multivariater Feststoffprozesse am Beispiel der formselektiven Kristallisation" 
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

119
Letzte Woche
1
Letzten Monat
2
checked on 04.10.2022

SCOPUSTM   
Zitate

7
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.