Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2424
DC FieldValueLanguage
dc.contributor.authorFinsel, Maik-
dc.contributor.authorHemme, Maria-
dc.contributor.authorDöring, Sebastian-
dc.contributor.authorRüter, Jil S. V.-
dc.contributor.authorDahl, Gregor Thomas-
dc.contributor.authorKrekeler, Tobias-
dc.contributor.authorKornowski, Andreas-
dc.contributor.authorRitter, Martin-
dc.contributor.authorWeller, Horst-
dc.contributor.authorVossmeyer, Tobias-
dc.date.accessioned2019-10-09T05:37:58Z-
dc.date.available2019-10-09T05:37:58Z-
dc.date.issued2019-08-28-
dc.identifier.citationRSC Advances 46 (9): 26902-26914 (2019)de_DE
dc.identifier.issn2046-2069de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3519-
dc.description.abstractZrO2@SiO2 core-shell submicron particles are promising candidates for the development of advanced optical materials. Here, submicron zirconia particles were synthesized using a modified sol-gel method and pre-calcined at 400 °C. Silica shells were grown on these particles (average size: ∼270 nm) with well-defined thicknesses (26 to 61 nm) using a seeded-growth Stöber approach. To study the thermal stability of bare ZrO2 cores and ZrO2@SiO2 core-shell particles they were calcined at 450 to 1200 °C. After heat treatments, the particles were characterized by SEM, TEM, STEM, cross-sectional EDX mapping, and XRD. The non-encapsulated, bare ZrO2 particles predominantly transitioned to the tetragonal phase after pre-calcination at 400 °C. Increasing the temperature to 600 °C transformed them to monoclinic. Finally, grain coarsening destroyed the spheroidal particle shape after heating to 800 °C. In striking contrast, SiO2-encapsulation significantly inhibited grain growth and the t → m transition progressed considerably only after heating to 1000 °C, whereupon the particle shape, with a smooth silica shell, remained stable. Particle disintegration was observed after heating to 1200 °C. Thus, ZrO2@SiO2 core-shell particles are suited for high-temperature applications up to ∼1000 °C. Different mechanisms are considered to explain the markedly enhanced stability of ZrO2@SiO2 core-shell particles.en
dc.description.sponsorshipFunded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 192346071 – SFB 986 (Projects C6, Z3, A1).de_DE
dc.language.isoende_DE
dc.publisherRSC Publishingde_DE
dc.relation.ispartofRSC Advancesde_DE
dc.subject.ddc600: Technikde_DE
dc.titleSynthesis and thermal stability of ZrO2@SiO2 core-shell submicron particlesde_DE
dc.typeArticlede_DE
dc.identifier.urnurn:nbn:de:gbv:830-882.051340-
dc.identifier.doi10.15480/882.2424-
dc.type.diniarticle-
dc.subject.ddccode600-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.051340-
tuhh.oai.showtruede_DE
tuhh.abstract.englishZrO2@SiO2 core-shell submicron particles are promising candidates for the development of advanced optical materials. Here, submicron zirconia particles were synthesized using a modified sol-gel method and pre-calcined at 400 °C. Silica shells were grown on these particles (average size: ∼270 nm) with well-defined thicknesses (26 to 61 nm) using a seeded-growth Stöber approach. To study the thermal stability of bare ZrO2 cores and ZrO2@SiO2 core-shell particles they were calcined at 450 to 1200 °C. After heat treatments, the particles were characterized by SEM, TEM, STEM, cross-sectional EDX mapping, and XRD. The non-encapsulated, bare ZrO2 particles predominantly transitioned to the tetragonal phase after pre-calcination at 400 °C. Increasing the temperature to 600 °C transformed them to monoclinic. Finally, grain coarsening destroyed the spheroidal particle shape after heating to 800 °C. In striking contrast, SiO2-encapsulation significantly inhibited grain growth and the t → m transition progressed considerably only after heating to 1000 °C, whereupon the particle shape, with a smooth silica shell, remained stable. Particle disintegration was observed after heating to 1200 °C. Thus, ZrO2@SiO2 core-shell particles are suited for high-temperature applications up to ∼1000 °C. Different mechanisms are considered to explain the markedly enhanced stability of ZrO2@SiO2 core-shell particles.de_DE
tuhh.publisher.doi10.1039/c9ra05078g-
tuhh.publication.instituteBetriebseinheit Elektronenmikroskopie M-26de_DE
tuhh.identifier.doi10.15480/882.2424-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanM-26de
tuhh.institute.englishBetriebseinheit Elektronenmikroskopie M-26de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by-nc/3.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue46de_DE
tuhh.container.volume9de_DE
tuhh.container.startpage26902de_DE
tuhh.container.endpage26914de_DE
dc.rights.nationallicensefalsede_DE
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.creatorOrcidFinsel, Maik-
item.creatorOrcidHemme, Maria-
item.creatorOrcidDöring, Sebastian-
item.creatorOrcidRüter, Jil S. V.-
item.creatorOrcidDahl, Gregor Thomas-
item.creatorOrcidKrekeler, Tobias-
item.creatorOrcidKornowski, Andreas-
item.creatorOrcidRitter, Martin-
item.creatorOrcidWeller, Horst-
item.creatorOrcidVossmeyer, Tobias-
item.creatorGNDFinsel, Maik-
item.creatorGNDHemme, Maria-
item.creatorGNDDöring, Sebastian-
item.creatorGNDRüter, Jil S. V.-
item.creatorGNDDahl, Gregor Thomas-
item.creatorGNDKrekeler, Tobias-
item.creatorGNDKornowski, Andreas-
item.creatorGNDRitter, Martin-
item.creatorGNDWeller, Horst-
item.creatorGNDVossmeyer, Tobias-
crisitem.author.deptBetriebseinheit Elektronenmikroskopie M-26-
crisitem.author.deptBetriebseinheit Elektronenmikroskopie M-26-
crisitem.author.orcid0000-0003-0666-3756-
crisitem.author.orcid0000-0002-8620-5319-
crisitem.author.orcid0000-0003-2299-9639-
crisitem.author.orcid0000-0002-5664-859X-
crisitem.author.orcid0000-0003-2967-6955-
crisitem.author.orcid0000-0001-9738-3826-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext (tub.dok)
Files in This Item:
File Description SizeFormat
c9ra05078g.pdfVerlags-PDF2,67 MBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons