Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2506
Publisher DOI: 10.1038/s41467-019-12955-3
Title: Membrane protein megahertz crystallography at the European XFEL
Language: English
Authors: Gisriel, Christopher 
Coe, Jesse 
Letrun, Romain 
Yefanov, Oleksandr 
Luna-Chavez, Cesar 
Stander, Natasha E. 
Lisova, Stella 
Mariani, Valerio 
Kuhn, Manuela 
Aplin, Steven 
Grant, Thomas D. 
Dörner, Katerina Henrike 
Sato, Tokushi 
Echelmeier, Austin 
Cruz Villarreal, Jorvani 
Hunter, Mark S. 
Wiedorn, Max Oliver 
Knoška, Juraj 
Mazalova, Victoria 
Roy-Chowdhury, Shatabdi 
Yang, Jay How 
Jones, Alex 
Bean, Richard 
Bielecki, Johan 
Kim, Yoonhee 
Mills, Grant 
Weinhausen, Britta 
Meza, Jose D. 
Al-Qudami, Nasser 
Bajt, Saša 
Brehm, Gerrit 
Botha, Sabine 
Boukhelef, Djelloul 
Brockhauser, Sandor 
Bruce, Barry D. 
Coleman, Matthew A. 
Danilevski, Cyril 
Discianno, Erin 
Dobson, Zachary 
Fangohr, Hans 
Martin-Garcia, Jose Manuel 
Gevorkov, Yaroslav 
Hauf, Steffen 
Hosseinizadeh, Ahmad 
Januschek, F. 
Ketawala, Gihan K. 
Kupitz, Christopher 
Maia, Luis 
Manetti, Maurizio 
Messerschmidt, Marc 
Michelat, Thomas 
Mondal, Jyotirmoy 
Ourmazd, Abbas 
Previtali, Gianpietro 
Sarrou, Iosifina 
Schön, Silvan 
Schwander, Peter 
Shelby, Megan L. 
Silenzi, Alessandro 
Sztuk-Dambietz, Jolanta 
Szuba, Janusz 
Turcato, Monica 
White, Thomas A. 
Wrona, Krzysztof 
Xu, C. 
Abdellatif, Mohamed H. 
Zook, James D. 
Spence, John C. H. 
Chapman, Henry N. 
Barty, Anton 
Kirian, Richard A. 
Frank, Matthias 
Ros, Alexandra 
Schmidt, Marius 
Fromme, Raimund 
Mancuso, Adrian P. 
Fromme, Petra 
Zatsepin, Nadia 
Issue Date: 4-Nov-2019
Publisher: Nature Publishing Group UK
Source: Nature Communications 1 (10): 5021 (2019-12-01)
Journal or Series Name: Nature Communications 
Abstract (english): The world’s first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.
URI: http://hdl.handle.net/11420/3790
DOI: 10.15480/882.2506
ISSN: 2041-1723
Institute: Bildverarbeitungssysteme E-2 
Type: (wissenschaftlicher) Artikel
Funded by: We acknowledge funding from the Biodesign Center for Applied Structural Discovery at Arizona State University, and the following federal grants: the National Science Foundation (NSF) Science awards for Technology Center (STC) BioXFEL award no. STC-1231306 and award no. 1565180 (N.A.Z., R.A.K., S.B., and J.C.H.S.), the U.S. Department of Energy, Office of Science, Basic Energy Sciences award DE-SC0002164 and DESC0010575, and the National Institutes of Health grant R01GM095583. This work is also supported by the AXSIS project funded by the European Research Council under the European Union Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement no. 609920. Funding was provided by the excellence cluster The Hamburg Center for Ultrafast Imaging—Structure, Dynamics, and Control of Matter at the Atomic Scale of the Deutsche Forschungsgemeinschaft (CUI, DFG-EXC1074), and the BMBF through the Roentgen-Angstrom Cluster grant 05K18CHA. This work was performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. M.A.C,, M.L.S., and M.F. were supported by NIH grant R01GM117342. We acknowledge the support of the Australian Research Council through the Centre of Excellence in Advanced Molecular Imaging (CE140100011).
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
s41467-019-12955-3.pdfVerlags-PDF5,94 MBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

90
Last Week
14
Last month
checked on Dec 6, 2019

Download(s)

19
checked on Dec 6, 2019

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons