Verlagslink DOI: 10.1007/s00020-017-2388-4
Titel: Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity
Sprache: Englisch
Autor/Autorin: Rohleder, Jonathan 
Seifert, Christian  
Schlagwörter: Absolutely continuous spectrum; Quantum graph; Schrödinger operator; Tree
Erscheinungs­datum: 1-Nov-2017
Quellenangabe: Integral Equations and Operator Theory 3 (89): 439-453 (2017-11-01)
Zusammenfassung (englisch): 
On an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ- and weighted δ′-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.
URI: http://hdl.handle.net/11420/3824
ISSN: 0378-620X
Zeitschrift: Integral equations and operator theory 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

144
Letzte Woche
1
Letzten Monat
2
checked on 04.10.2022

SCOPUSTM   
Zitate

1
Letzte Woche
0
Letzten Monat
0
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.