DC FieldValueLanguage
dc.contributor.authorRohleder, Jonathan-
dc.contributor.authorSeifert, Christian-
dc.date.accessioned2019-11-20T14:48:36Z-
dc.date.available2019-11-20T14:48:36Z-
dc.date.issued2017-11-01-
dc.identifier.citationIntegral Equations and Operator Theory 3 (89): 439-453 (2017-11-01)de_DE
dc.identifier.issn0378-620Xde_DE
dc.identifier.urihttp://hdl.handle.net/11420/3824-
dc.description.abstractOn an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ- and weighted δ′-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.en
dc.language.isoende_DE
dc.relation.ispartofIntegral equations and operator theoryde_DE
dc.subjectAbsolutely continuous spectrumde_DE
dc.subjectQuantum graphde_DE
dc.subjectSchrödinger operatorde_DE
dc.subjectTreede_DE
dc.titleAbsolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicityde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishOn an infinite, radial metric tree graph we consider the corresponding Laplacian equipped with self-adjoint vertex conditions from a large class including δ- and weighted δ′-couplings. Assuming the numbers of different edge lengths, branching numbers and different coupling conditions to be finite, we prove that the presence of absolutely continuous spectrum implies that the sequence of geometric data of the tree as well as the coupling conditions are eventually periodic. On the other hand, we provide examples of self-adjoint, non-periodic couplings which admit absolutely continuous spectrum.de_DE
tuhh.publisher.doi10.1007/s00020-017-2388-4-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume89de_DE
tuhh.container.startpage439de_DE
tuhh.container.endpage453de_DE
dc.identifier.scopus2-s2.0-85026450650-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDRohleder, Jonathan-
item.creatorGNDSeifert, Christian-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidRohleder, Jonathan-
item.creatorOrcidSeifert, Christian-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-9182-8687-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

90
Last Week
1
Last month
2
checked on Aug 17, 2022

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.