Publisher DOI: 10.1016/j.laa.2017.04.022
Title: A short note on the ratio between sign-real and sign-complex spectral radius of a real square matrix
Language: English
Authors: Bünger, Florian 
Keywords: Eigenvalue inequalities; Sign-complex spectral radius; Sign-real spectral radius; Spectral radius
Issue Date: 15-Sep-2017
Source: Linear Algebra and Its Applications (529): 126-132 (2017-09-15)
Abstract (english): 
For a real (n×n)-matrix A the sign-real and the sign-complex spectral radius – invented by Rump – are respectively defined as ρR(A):=max⁡|λ|||Ax|=|λx|,λ∈R,x∈Rn{0,ρC(A):=max⁡|λ|||Ax|=|λx|,λ∈C,x∈Cn{0. For n≥2 we prove ρR(A)≥ζn ρC(A) where the constant ζn:=[formula omitted] is best possible.
URI: http://hdl.handle.net/11420/3852
ISSN: 0024-3795
Journal: 
Institute: Zuverlässiges Rechnen E-19 
Document Type: Article
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

122
Last Week
1
Last month
2
checked on May 29, 2023

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.