Verlagslink DOI: 10.1016/j.laa.2009.10.014
Titel: Detecting hyperbolic and definite matrix polynomials
Sprache: Englisch
Autor/Autorin: Niendorf, Vasco 
Voß, Heinrich 
Schlagwörter: Definite matrix polynomial; Hyperbolic; Matrix polynomial; Minmax characterization; Overdamped; Quadratic eigenvalue problem; Safeguarded iteration
Erscheinungs­datum: 17-Nov-2009
Verlag: American Elsevier Publ.
Quellenangabe: Linear Algebra and Its Applications 4 (432): 1017-1035 (2010)
Zusammenfassung (englisch): 
Hyperbolic or more generally definite matrix polynomials are important classes of Hermitian matrix polynomials. They allow for a definite linearization and can therefore be solved by a standard algorithm for Hermitian matrices. They have only real eigenvalues which can be characterized as minmax and maxmin values of Rayleigh functionals, but there is no easy way to test if a given polynomial is hyperbolic or definite or not. Taking advantage of the safeguarded iteration which converges globally and monotonically to extreme eigenvalues we obtain an efficient algorithm that identifies hyperbolic or definite polynomials and enables the transformation to an equivalent definite linear pencil. Numerical examples demonstrate the efficiency of the approach. © 2009 Elsevier Inc. All rights reserved.
URI: http://hdl.handle.net/11420/3904
ISSN: 0024-3795
Zeitschrift: Linear algebra and its applications 
Institut: Mathematik E-10 
Numerische Simulation E-10 (H) 
Dokumenttyp: Artikel/Aufsatz
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

113
Letzte Woche
1
Letzten Monat
2
checked on 01.10.2022

SCOPUSTM   
Zitate

17
Letzte Woche
2
Letzten Monat
1
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.