DC FieldValueLanguage
dc.contributor.authorNiendorf, Vasco-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2019-11-27T14:09:08Z-
dc.date.available2019-11-27T14:09:08Z-
dc.date.issued2009-11-17-
dc.identifier.citationLinear Algebra and Its Applications 4 (432): 1017-1035 (2010)de_DE
dc.identifier.issn0024-3795de_DE
dc.identifier.urihttp://hdl.handle.net/11420/3904-
dc.description.abstractHyperbolic or more generally definite matrix polynomials are important classes of Hermitian matrix polynomials. They allow for a definite linearization and can therefore be solved by a standard algorithm for Hermitian matrices. They have only real eigenvalues which can be characterized as minmax and maxmin values of Rayleigh functionals, but there is no easy way to test if a given polynomial is hyperbolic or definite or not. Taking advantage of the safeguarded iteration which converges globally and monotonically to extreme eigenvalues we obtain an efficient algorithm that identifies hyperbolic or definite polynomials and enables the transformation to an equivalent definite linear pencil. Numerical examples demonstrate the efficiency of the approach. © 2009 Elsevier Inc. All rights reserved.en
dc.language.isoende_DE
dc.publisherAmerican Elsevier Publ.de_DE
dc.relation.ispartofLinear algebra and its applicationsde_DE
dc.subjectDefinite matrix polynomialde_DE
dc.subjectHyperbolicde_DE
dc.subjectMatrix polynomialde_DE
dc.subjectMinmax characterizationde_DE
dc.subjectOverdampedde_DE
dc.subjectQuadratic eigenvalue problemde_DE
dc.subjectSafeguarded iterationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleDetecting hyperbolic and definite matrix polynomialsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishHyperbolic or more generally definite matrix polynomials are important classes of Hermitian matrix polynomials. They allow for a definite linearization and can therefore be solved by a standard algorithm for Hermitian matrices. They have only real eigenvalues which can be characterized as minmax and maxmin values of Rayleigh functionals, but there is no easy way to test if a given polynomial is hyperbolic or definite or not. Taking advantage of the safeguarded iteration which converges globally and monotonically to extreme eigenvalues we obtain an efficient algorithm that identifies hyperbolic or definite polynomials and enables the transformation to an equivalent definite linear pencil. Numerical examples demonstrate the efficiency of the approach. © 2009 Elsevier Inc. All rights reserved.de_DE
tuhh.publisher.doi10.1016/j.laa.2009.10.014-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.publication.instituteNumerische Simulation E-10 (H)de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematik E-10de_DE
tuhh.gvk.hasppnfalse-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue4de_DE
tuhh.container.volume432de_DE
tuhh.container.startpage1017de_DE
tuhh.container.endpage1035de_DE
dc.identifier.scopus2-s2.0-71649103477-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDNiendorf, Vasco-
item.creatorGNDVoß, Heinrich-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidNiendorf, Vasco-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

109
Last Week
1
Last month
2
checked on Aug 15, 2022

SCOPUSTM   
Citations

17
Last Week
2
Last month
1
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.