Verlagslink DOI: 10.1007/978-3-319-47079-5_3
Titel: On symmetries of the feinberg-zee random hopping matrix
Sprache: Englisch
Autor/Autorin: Chandler-Wilde, Simon N. 
Hagger, Raffael 
Schlagwörter: Fractal; Jacobi operator; Julia set; Non-selfadjoint operator; Random operator; Spectral theory
Erscheinungs­datum: 2017
Verlag: Birkhäuser
Quellenangabe: in: Recent Trends in Operator Theory and Partial Differential Equations. Operator Theory: Advances and Applications (258): 51-78 (2017)
Zusammenfassung (englisch): 
In this paper we study the spectrum Σ of the infinite Feinberg-Zee random hopping matrix, a tridiagonal matrix with zeros on the main diagonal and random ±1‘s on the first sub- and super-diagonals; the study of this non-selfadjoint random matrix was initiated in Feinberg and Zee (Phys. Rev. E 59 (1999), 6433-6443). Recently Hagger (Random Matrices: Theory Appl., 4 1550016 (2015)) has shown that the so-called periodic part Σπ of Σ, conjectured to be the whole of Σ and known to include the unit disk, satisfies p-1(Σπ) ⊂ Σπ for an infinite class S of monic polynomials p. In this paper we make very explicit the membership of S, in particular showing that it includes Pm(λ) = λUm-1(λ/2), for m ≥ 2, where Un(x) is the Chebychev polynomial of the second kind of degree n. We also explore implications of these inverse polynomial mappings, for example showing that Σπ is the closure of its interior, and contains the filled Julia sets of infinitely many p ∈ S, including those of Pm, this partially answering a conjecture of the second author.
URI: http://hdl.handle.net/11420/3942
ISSN: 0255-0156
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Buch)
Teil der Schriftenreihe: Operator theory 
Bandangabe: 258
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

121
Letzte Woche
1
Letzten Monat
2
checked on 04.10.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.