TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. On symmetries of the feinberg-zee random hopping matrix
 
Options

On symmetries of the feinberg-zee random hopping matrix

Publikationstyp
Book Part
Date Issued
2017
Sprache
English
Author(s)
Chandler-Wilde, Simon N.  
Hagger, Raffael  
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/3942
First published in
Operator theory  
Number in series
258
Start Page
51
End Page
78
Citation
in: Recent Trends in Operator Theory and Partial Differential Equations. Operator Theory: Advances and Applications (258): 51-78 (2017)
Publisher DOI
10.1007/978-3-319-47079-5_3
Scopus ID
2-s2.0-85013921078
Publisher
Birkhäuser
In this paper we study the spectrum Σ of the infinite Feinberg-Zee random hopping matrix, a tridiagonal matrix with zeros on the main diagonal and random ±1‘s on the first sub- and super-diagonals; the study of this non-selfadjoint random matrix was initiated in Feinberg and Zee (Phys. Rev. E 59 (1999), 6433-6443). Recently Hagger (Random Matrices: Theory Appl., 4 1550016 (2015)) has shown that the so-called periodic part Σπ of Σ, conjectured to be the whole of Σ and known to include the unit disk, satisfies p-1(Σπ) ⊂ Σπ for an infinite class S of monic polynomials p. In this paper we make very explicit the membership of S, in particular showing that it includes Pm(λ) = λUm-1(λ/2), for m ≥ 2, where Un(x) is the Chebychev polynomial of the second kind of degree n. We also explore implications of these inverse polynomial mappings, for example showing that Σπ is the closure of its interior, and contains the filled Julia sets of infinitely many p ∈ S, including those of Pm, this partially answering a conjecture of the second author.
Subjects
Fractal
Jacobi operator
Julia set
Non-selfadjoint operator
Random operator
Spectral theory
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback