TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Segmentation of PLS path models by iterative reweighted regressions
 
Options

Segmentation of PLS path models by iterative reweighted regressions

Publikationstyp
Journal Article
Date Issued
2016-10-01
Sprache
English
Author(s)
Schlittgen, Rainer  
Ringle, Christian M.  orcid-logo
Sarstedt, Marko  
Becker, Jan-Michael  
Institut
Personalwirtschaft und Arbeitsorganisation W-9  
TORE-URI
http://hdl.handle.net/11420/4023
Journal
Journal of business research  
Volume
69
Issue
10
Start Page
4583
End Page
4592
Citation
Journal of Business Research 69 (10): 4583-4592 (2016-10-01)
Publisher DOI
10.1016/j.jbusres.2016.04.009
Scopus ID
2-s2.0-84964577560
Uncovering unobserved heterogeneity is a requirement to obtain valid results when using structural equation modeling (SEM). Conventional segmentation methods usually fail in an SEM context because they account for the indicator data, but not for the latent variables and their relationships in the structural model. This research introduces a new segmentation approach to variance-based SEM using partial least squares path modeling (PLS). The iterative reweighted regressions segmentation method for PLS (PLS-IRRS) effectively identifies and treats unobserved heterogeneity in data sets. Compared to existing alternatives, PLS-IRRS is multiple times faster while delivering results of the same quality. Researchers should therefore routinely use PLS-IRRS to address the critical issue of unobserved heterogeneity in PLS.
Subjects
fsQCA
Fuzzy set qualitative comparative analysis
Genetic algorithms
Partial least squares
PLS
PLS-IRRS
Reweighted regressions
Segmentation
DDC Class
000: Allgemeines, Wissenschaft
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback