TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Genetic algorithm segmentation in partial least squares structural equation modeling
 
Options

Genetic algorithm segmentation in partial least squares structural equation modeling

Publikationstyp
Journal Article
Date Issued
2013-03-29
Sprache
English
Author(s)
Ringle, Christian M.  orcid-logo
Sarstedt, Marko  
Schlittgen, Rainer  
Institut
Personalwirtschaft und Arbeitsorganisation W-9  
TORE-URI
http://hdl.handle.net/11420/4033
Journal
OR spectrum  
Volume
36
Issue
1
Start Page
251
End Page
276
Citation
OR Spectrum 36 (1): 251-276 (2013-03-29)
Publisher DOI
10.1007/s00291-013-0320-0
Scopus ID
2-s2.0-84892679127
When applying the partial least squares structural equation modeling (PLS-SEM) method, the assumption that the data stem from a single homogeneous population is often unrealistic. For the full set of data, unobserved heterogeneity in the PLS path model estimates may result in misleading interpretations. This research presents the PLS genetic algorithm segmentation (PLS-GAS) method to account for unobserved heterogeneity in the path model estimates. The results of a simulation study guide an assessment of this novel approach. PLS-GAS allows for uncovering unobserved heterogeneity and identifying different groups within a data set. In an application on customer satisfaction data and the American customer satisfaction index model, the method identifies distinctive group-specific PLS path model estimates which allow for a further differentiated interpretation of the results. © 2013 Springer-Verlag Berlin Heidelberg.
Subjects
Genetic algorithm
Partial least squares
Path modeling
PLS-SEM
Segmentation
Structural equation modeling
DDC Class
000: Allgemeines, Wissenschaft
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback