TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Fully automated lesion segmentation using heavily trained 3D convolutional neural networks are equivalent to manual expert segmentations
 
Options

Fully automated lesion segmentation using heavily trained 3D convolutional neural networks are equivalent to manual expert segmentations

Publikationstyp
Conference Poster not in Proceedings
Date Issued
2019
Sprache
English
Author(s)
Krüger, Julia  
Opfer, Roland  
Gessert, Nils Thorben  
Ostwaldt, Ann-Christin  
Walker-Egger, Christine  
Manogaran, Paraveena  
Wang, Chenyu  
Barnett, Michael  
Schlaefer, Alexander  
Schippling, Sven  
Institut
Medizintechnische Systeme E-1  
TORE-URI
http://hdl.handle.net/11420/4382
Journal
Multiple sclerosis journal  
Start Page
844
End Page
845
Article Number
EP1521
Publisher DOI
10.1177/1352458519872904
Publisher
SAGE
DDC Class
004: Informatik
610: Medizin
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback