TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Parameterized complexity dichotomy for Steiner Multicut
 
Options

Parameterized complexity dichotomy for Steiner Multicut

Publikationstyp
Journal Article
Date Issued
2016-09-01
Sprache
English
Author(s)
Bringmann, Karl  
Hermelin, Danny  
Mnich, Matthias  orcid-logo
Leeuwen, Erik Jan van  
TORE-URI
http://hdl.handle.net/11420/4612
Journal
Journal of computer and system sciences  
Volume
82
Issue
6
Start Page
1020
End Page
1043
Citation
Journal of Computer and System Sciences (2016)
Publisher DOI
10.1016/j.jcss.2016.03.003
We consider the Steiner Multicut problem, which asks, given an undirected graph G, a collection T={T1,...,Tt}, Ti V(G), of terminal sets of size at most p, and an integer k, whether there is a set S of at most k edges or nodes such that of each set Ti at least one pair of terminals is in different connected components of G-S. We provide a dichotomy of the parameterized complexity of Steiner Multicut. For any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable, W[1]-hard, or (para-)NP-complete. Our characterization includes a dichotomy for Steiner Multicut on trees as well as a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).
Subjects
Cut problems
Kernelization
Parameterized complexity
Steiner multicut
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback