Please use this identifier to cite or link to this item:
Fulltext available Open Access
Publisher DOI: 10.1063/1.5138717
Title: Shape-controlling effects of hydrohalic and carboxylic acids in TiO2 nanoparticle synthesis
Language: English
Authors: Sellschopp, Kai  
Heckel, Wolfgang 
Gäding, Johannes  
Schröter, Clemens Jasper 
Hensel, Andreas 
Vossmeyer, Tobias 
Weller, Horst 
Müller, Stefan 
Feldbauer, Gregor B.  
Issue Date: 10-Feb-2020
Source: The Journal of Chemical Physics 6 (152): 064702 (2020)
Journal or Series Name: The journal of chemical physics 
Abstract (english): The ability to synthesize nanoparticles (NPs), here TiO2, of different shapes in a controlled and reproducible way is of high significance for a wide range of fields including catalysis and materials design. Different NP shapes exhibit variations of emerging facets, and processes such as adsorption, diffusion, and catalytic activity are, in general, facet sensitive. Therefore, NP properties, e.g., the reactivity of NPs or the stability of assembled NPs, depend on their shape. We combine computational modeling based on density functional theory with experimental techniques such as transmission electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray powder diffraction to investigate the ability of various adsorbates, including hydrohalic and carboxylic acids, to influence NP shape. This approach allows us to identify mechanisms stabilizing specific surface facets and thus to predict NP shapes using computational model systems and to experimentally characterize the synthesized NPs in detail. Shape-controlled anatase TiO2 NPs are synthesized here in agreement with the calculations in platelet and bi-pyramidal shapes by employing different precursors. The importance of the physical conditions and chemical environment during synthesis, e.g., via competitive adsorption or changes in the chemical potentials, is studied via ab initio thermodynamics, which allows us to set previous and new results in a broader context and to highlight potentials for additional synthesis routes and NP shapes.
DOI: 10.15480/882.2657
ISSN: 0021-9606
Institute: Keramische Hochleistungswerkstoffe M-9 
Type: (wissenschaftlicher) Artikel
Funded by: Deutsche Forschungsgemeinschaft (DFG)
Project: SFB 986: Teilprojekt A4 - Ab-initio basierende Modellierung und Beeinflussung der mechanischen Eigenschaften von Hybridgrenzflächen 
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
1.5138717.pdfVerlags-PDF5,9 MBAdobe PDFThumbnail
supplementary_material.pdfAnhang12,54 MBAdobe PDFThumbnail
Show full item record

Page view(s)

Last Week
Last month
checked on Oct 1, 2020


checked on Oct 1, 2020

Google ScholarTM


Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.