TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Hierarchical Matrix Approximation for Kernel-Based Scattered Data Interpolation
 
Options

Hierarchical Matrix Approximation for Kernel-Based Scattered Data Interpolation

Publikationstyp
Journal Article
Date Issued
2017-10-03
Sprache
English
Author(s)
Iske, Armin  
Le Borne, Sabine  orcid-logo
Wende, Michael  
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/4954
Journal
SIAM journal on scientific computing  
Volume
39
Issue
5
Start Page
A2287
End Page
A2316
Citation
SIAM Journal on Scientific Computing 39 (5): A2287-A2316 (2017)
Publisher DOI
10.1137/16M1101167
Scattered data interpolation by radial kernel functions leads to linear equation systems with large, fully populated, ill-conditioned interpolation matrices. A successful iterative solution of such a system requires an efficient matrix-vector multiplication as well as an efficient preconditioner. While multipole approaches provide a fast matrix-vector multiplication, they avoid the explicit setup of the system matrix which hinders the construction of preconditioners, such as approximate inverses or factorizations which typically require the explicit system matrix for their construction. In this paper, we propose an approach that allows both an efficient matrix-vector multiplication as well as an explicit matrix representation which can then be used to construct a preconditioner. In particular, the interpolation matrix will be represented in hierarchical matrix format, and several approaches for the blockwise low-rank approximation are proposed and compared, of both analytical nature (separable expansions) and algebraic nature (adaptive cross approximation). The validity of using an approximate system matrix in the iterative solution of the interpolation equations is demonstrated through a range of numerical experiments.
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback