Verlagslink DOI: 10.1007/978-3-319-18827-0_57
Titel: Hierarchical preconditioners for high-order FEM
Sprache: Englisch
Autor/Autorin: Le Borne, Sabine  
Erscheinungs­datum: 1-Jan-2016
Verlag: Springer
Quellenangabe: Lecture Notes in Computational Science and Engineering (104): 559-566 (2016-01-01)
Zusammenfassung (englisch): 
The finite element discretization of partial differential equations (PDEs) requires the selection of suitable finite element spaces. While high-order finite elements often lead to solutions of higher accuracy, their associated discrete linear systems of equations are often more difficult to solve (and to set up) compared to those of lower order elements. We will present and compare preconditioners for these types of linear systems of equations. More specifically, we will use hierarchical (H-) matrices to build block H-LU preconditioners. H-matrices provide a powerful technique to compute and store approximations to dense matrices in a data-sparse format. We distinguish between blackbox H-LU preconditioners which factor the entire stiffness matrix and hybrid methods in which only certain subblocks of the matrix are factored after some problem-specific information has been exploited.We conclude with numerical results.
URI: http://hdl.handle.net/11420/4961
ISBN: 978-3-319-18827-0
978-3-319-18826-3
ISSN: 2197-7100
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Konferenzband)
Teil der Schriftenreihe: Lecture notes in computational science and engineering 
Bandangabe: 104 LNCSE
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

90
Letzte Woche
1
Letzten Monat
3
checked on 06.10.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.