DC FieldValueLanguage
dc.contributor.authorCousins, Benjamin R.-
dc.contributor.authorLe Borne, Sabine-
dc.contributor.authorLinke, Alexander-
dc.contributor.authorRebholz, Leo G.-
dc.contributor.authorWang, Zhen-
dc.date.accessioned2020-02-18T13:42:31Z-
dc.date.available2020-02-18T13:42:31Z-
dc.date.issued2012-12-05-
dc.identifier.citationNumerical Methods for Partial Differential Equations 4 (29): 1217-1237 (2013)de_DE
dc.identifier.issn1098-2426de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4962-
dc.description.abstractRecent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. To judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d,Pk-1disc) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and ℋ -LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications.en
dc.language.isoende_DE
dc.publisherWileyde_DE
dc.relation.ispartofNumerical methods for partial differential equationsde_DE
dc.subjectaugmented lagrangian preconditioningde_DE
dc.subjectH-Lude_DE
dc.subjectlinear solversde_DE
dc.subjectscott-Vogelius elementsde_DE
dc.subjectstatic condensationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleEfficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elementsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishRecent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence-free mixed finite elements may have a significantly smaller discretization error than standard nondivergence-free mixed finite elements. To judge the overall performance of divergence-free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d,Pk-1disc) Scott-Vogelius finite element implementations of the incompressible Navier-Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott-Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor-Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and ℋ -LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications.de_DE
tuhh.publisher.doi10.1002/num.21752-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue4de_DE
tuhh.container.volume29de_DE
tuhh.container.startpage1217de_DE
tuhh.container.endpage1237de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.languageiso639-1en-
item.grantfulltextnone-
item.creatorOrcidCousins, Benjamin R.-
item.creatorOrcidLe Borne, Sabine-
item.creatorOrcidLinke, Alexander-
item.creatorOrcidRebholz, Leo G.-
item.creatorOrcidWang, Zhen-
item.mappedtypeArticle-
item.creatorGNDCousins, Benjamin R.-
item.creatorGNDLe Borne, Sabine-
item.creatorGNDLinke, Alexander-
item.creatorGNDRebholz, Leo G.-
item.creatorGNDWang, Zhen-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

77
Last Week
0
Last month
2
checked on Aug 8, 2022

SCOPUSTM   
Citations

10
Last Week
0
Last month
0
checked on Jul 11, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.