DC FieldValueLanguage
dc.contributor.authorLe Borne, Sabine-
dc.contributor.authorRebholz, Leo G.-
dc.date.accessioned2020-02-18T14:10:24Z-
dc.date.available2020-02-18T14:10:24Z-
dc.date.issued2015-03-01-
dc.identifier.citationComputing and Visualization in Science 6 (16): 259-269 (2015)de_DE
dc.identifier.issn1433-0369de_DE
dc.identifier.urihttp://hdl.handle.net/11420/4964-
dc.description.abstractThis paper deals with the analysis of preconditioning techniques for a recently introduced sparse grad-div stabilization of the Oseen problem. The finite element discretization error for the Oseen problem can be reduced through the addition of a grad-div stabilization term to the momentum equation of the Oseen problem. Such a stabilization has an interesting effect on the properties of the discrete linear system of equations, in particular on the convergence properties of iterative solvers. Comparing to unstabilized systems, it swaps the levels of difficulties for solving the two main subproblems, i.e., solving for the first diagonal block and solving a Schur complement problem, that occur in preconditioners based on block triangular factorizations. In this paper we are concerned with a sparse variant of grad-div stabilization which has been shown to have a stabilization effect similar to the full grad-div stabilization while leading to a sparser system matrix. Our focus lies on the subsequent iterative solution of the discrete system of equations.en
dc.language.isoende_DE
dc.publisherSpringerde_DE
dc.relation.ispartofComputing and visualization in sciencede_DE
dc.subjectaugmented lagrangiande_DE
dc.subjectgrad-div stabilizationde_DE
dc.subjectoseen problemde_DE
dc.subjectpreconditionerde_DE
dc.subjectschur complementde_DE
dc.subjectsparse grad-divde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titlePreconditioning sparse grad-div/augmented Lagrangian stabilized saddle point systemsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishThis paper deals with the analysis of preconditioning techniques for a recently introduced sparse grad-div stabilization of the Oseen problem. The finite element discretization error for the Oseen problem can be reduced through the addition of a grad-div stabilization term to the momentum equation of the Oseen problem. Such a stabilization has an interesting effect on the properties of the discrete linear system of equations, in particular on the convergence properties of iterative solvers. Comparing to unstabilized systems, it swaps the levels of difficulties for solving the two main subproblems, i.e., solving for the first diagonal block and solving a Schur complement problem, that occur in preconditioners based on block triangular factorizations. In this paper we are concerned with a sparse variant of grad-div stabilization which has been shown to have a stabilization effect similar to the full grad-div stabilization while leading to a sparser system matrix. Our focus lies on the subsequent iterative solution of the discrete system of equations.de_DE
tuhh.publisher.doi10.1007/s00791-015-0236-0-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue6de_DE
tuhh.container.volume16de_DE
tuhh.container.startpage259de_DE
tuhh.container.endpage269de_DE
dc.identifier.scopus2-s2.0-84923851830-
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLe Borne, Sabine-
item.creatorGNDRebholz, Leo G.-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidLe Borne, Sabine-
item.creatorOrcidRebholz, Leo G.-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-4399-4442-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

88
Last Week
1
Last month
2
checked on Aug 15, 2022

SCOPUSTM   
Citations

5
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.