Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2717
DC FieldValueLanguage
dc.contributor.authorDolganova, Iulia-
dc.contributor.authorRödl, Anne-
dc.contributor.authorBach, Vanessa-
dc.contributor.authorKaltschmitt, Martin-
dc.contributor.authorFinkbeiner, Matthias-
dc.date.accessioned2020-03-17T15:06:28Z-
dc.date.available2020-03-17T15:06:28Z-
dc.date.issued2020-03-13-
dc.identifierdoi: 10.3390/resources9030032-
dc.identifier.citationResources 9 (3): 32 (2020)de_DE
dc.identifier.issn2079-9276de_DE
dc.identifier.urihttp://hdl.handle.net/11420/5404-
dc.description.abstractChanges in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.en
dc.language.isoende_DE
dc.publisherMultidisciplinary Digital Publishing Institutede_DE
dc.relation.ispartofResourcesde_DE
dc.rightsCC BY 4.0de_DE
dc.subjectlife cycle assessmentde_DE
dc.subjectelectromobilityde_DE
dc.subjectresourcesde_DE
dc.subjectresource depletionde_DE
dc.subjectcriticalityde_DE
dc.subjectsupply risksde_DE
dc.subject.ddc380: Handel, Kommunikation, Verkehrde_DE
dc.subject.ddc600: Technikde_DE
dc.subject.ddc620: Ingenieurwissenschaftende_DE
dc.titleA review of life cycle assessment studies of electric vehicles with a focus on resource usede_DE
dc.typeArticlede_DE
dc.date.updated2020-03-13T13:08:37Z-
dc.identifier.doi10.15480/882.2717-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.079422-
tuhh.oai.showtruede_DE
tuhh.abstract.englishChanges in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.de_DE
tuhh.publisher.doi10.3390/resources9030032-
tuhh.publication.instituteUmwelttechnik und Energiewirtschaft V-9de_DE
tuhh.identifier.doi10.15480/882.2717-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.issue3de_DE
tuhh.container.volume9de_DE
dc.relation.projectBewertung der Inanspruchnahme biotischer und abiotischer Ressouren im Mobiitätssektor - Entwicklung von Ökobilanzkompatiblen Bewertungskriterien, -methoden und -konzeptende_DE
dc.rights.nationallicensefalsede_DE
tuhh.container.articlenumber32de_DE
local.status.inpressfalsede_DE
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.creatorOrcidDolganova, Iulia-
item.creatorOrcidRödl, Anne-
item.creatorOrcidBach, Vanessa-
item.creatorOrcidKaltschmitt, Martin-
item.creatorOrcidFinkbeiner, Matthias-
item.cerifentitytypePublications-
item.creatorGNDDolganova, Iulia-
item.creatorGNDRödl, Anne-
item.creatorGNDBach, Vanessa-
item.creatorGNDKaltschmitt, Martin-
item.creatorGNDFinkbeiner, Matthias-
crisitem.author.deptUmwelttechnik und Energiewirtschaft V-9-
crisitem.author.deptUmwelttechnik und Energiewirtschaft V-9-
crisitem.author.orcid0000-0001-7238-4881-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
crisitem.author.parentorgStudiendekanat Verfahrenstechnik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
resources-09-00032.pdf856,64 kBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons