TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter
 
Options

A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter

Publikationstyp
Journal Article
Date Issued
2016-10-01
Sprache
English
Author(s)
Mohammadi, Seyyed Abbas  
Voß, Heinrich 
Institut
Mathematik E-10  
TORE-URI
http://hdl.handle.net/11420/5789
Journal
Nonlinear analysis  
Volume
31
Start Page
119
End Page
131
Citation
Nonlinear Analysis: Real World Applications (31): 119-131 (2016-10-01)
Publisher DOI
10.1016/j.nonrwa.2016.01.015
Scopus ID
2-s2.0-84958748568
In this paper we examine an eigenvalue optimization problem. Given two nonlinear functions α(λ) and β(λ), find a subset D of the unit ball of measure A for which the first Dirichlet eigenvalue of the operator -div((α(λ)χD+β(λ)χDc)∇ u)=λu is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution, and we propose a numerical algorithm to obtain an approximate description of the optimizer.
Subjects
Eigenvalue optimization
Nonlinear eigenvalue problem
Quantum dots
Shape optimization
DDC Class
600: Technik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback