DC FieldValueLanguage
dc.contributor.authorMohammadi, Seyyed Abbas-
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2020-04-21T13:12:18Z-
dc.date.available2020-04-21T13:12:18Z-
dc.date.issued2016-10-01-
dc.identifier.citationNonlinear Analysis: Real World Applications (31): 119-131 (2016-10-01)de_DE
dc.identifier.issn1468-1218de_DE
dc.identifier.urihttp://hdl.handle.net/11420/5789-
dc.description.abstractIn this paper we examine an eigenvalue optimization problem. Given two nonlinear functions α(λ) and β(λ), find a subset D of the unit ball of measure A for which the first Dirichlet eigenvalue of the operator -div((α(λ)χD+β(λ)χDc)∇ u)=λu is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution, and we propose a numerical algorithm to obtain an approximate description of the optimizer.en
dc.language.isoende_DE
dc.relation.ispartofNonlinear analysisde_DE
dc.subjectEigenvalue optimizationde_DE
dc.subjectNonlinear eigenvalue problemde_DE
dc.subjectQuantum dotsde_DE
dc.subjectShape optimizationde_DE
dc.subject.ddc600: Technikde_DE
dc.titleA minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameterde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishIn this paper we examine an eigenvalue optimization problem. Given two nonlinear functions α(λ) and β(λ), find a subset D of the unit ball of measure A for which the first Dirichlet eigenvalue of the operator -div((α(λ)χD+β(λ)χDc)∇ u)=λu is as small as possible. This sort of nonlinear eigenvalue problems arises in the study of some quantum dots taking into account an electron effective mass. We establish the existence of a solution, and we propose a numerical algorithm to obtain an approximate description of the optimizer.de_DE
tuhh.publisher.doi10.1016/j.nonrwa.2016.01.015-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume31de_DE
tuhh.container.startpage119de_DE
tuhh.container.endpage131de_DE
dc.identifier.scopus2-s2.0-84958748568-
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDMohammadi, Seyyed Abbas-
item.creatorGNDVoß, Heinrich-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidMohammadi, Seyyed Abbas-
item.creatorOrcidVoß, Heinrich-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0002-3339-4929-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

54
Last Week
1
Last month
2
checked on Aug 15, 2022

SCOPUSTM   
Citations

8
Last Week
0
Last month
0
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.