DC FieldValueLanguage
dc.contributor.authorHagger, Raffael-
dc.contributor.authorLindner, Marko-
dc.contributor.authorSeidel, Markus-
dc.date.accessioned2020-04-28T18:28:37Z-
dc.date.available2020-04-28T18:28:37Z-
dc.date.issued2016-05-01-
dc.identifier.citationJournal of Mathematical Analysis and Applications 1 (437): 255-291 (2016-05-01)de_DE
dc.identifier.issn1096-0813de_DE
dc.identifier.urihttp://hdl.handle.net/11420/5948-
dc.description.abstractAn operator A on an lp-space is called band-dominated if it can be approximated, in the operator norm, by operators with a banded matrix representation. The coset of A in the Calkin algebra determines, for example, the Fredholmness of A, the Fredholm index, the essential spectrum, the essential norm and the so-called essential pseudospectrum of A. This coset can be identified with the collection of all so-called limit operators of A. It is known that this identification preserves invertibility (hence spectra). We now show that it also preserves norms and in particular resolvent norms (hence pseudospectra). In fact we work with a generalization of the ideal of compact operators, so-called P-compact operators, allowing for a more flexible framework that naturally extends to lp-spaces with p∈(1, ∞) and/or vector-valued lp-spaces.en
dc.language.isoende_DE
dc.relation.ispartofJournal of mathematical analysis and applicationsde_DE
dc.subjectBand-dominated operatorde_DE
dc.subjectEssential spectrumde_DE
dc.subjectFredholm theoryde_DE
dc.subjectLimit operatorde_DE
dc.subjectPseudospectrade_DE
dc.titleEssential pseudospectra and essential norms of band-dominated operatorsde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishAn operator A on an lp-space is called band-dominated if it can be approximated, in the operator norm, by operators with a banded matrix representation. The coset of A in the Calkin algebra determines, for example, the Fredholmness of A, the Fredholm index, the essential spectrum, the essential norm and the so-called essential pseudospectrum of A. This coset can be identified with the collection of all so-called limit operators of A. It is known that this identification preserves invertibility (hence spectra). We now show that it also preserves norms and in particular resolvent norms (hence pseudospectra). In fact we work with a generalization of the ideal of compact operators, so-called P-compact operators, allowing for a more flexible framework that naturally extends to lp-spaces with p∈(1, ∞) and/or vector-valued lp-spaces.de_DE
tuhh.publisher.doi10.1016/j.jmaa.2015.11.060-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue1de_DE
tuhh.container.volume437de_DE
tuhh.container.startpage255de_DE
tuhh.container.endpage291de_DE
dc.identifier.scopus2-s2.0-84959117593-
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDHagger, Raffael-
item.creatorGNDLindner, Marko-
item.creatorGNDSeidel, Markus-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidHagger, Raffael-
item.creatorOrcidLindner, Marko-
item.creatorOrcidSeidel, Markus-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-8483-2944-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

81
Last Week
1
Last month
2
checked on Aug 17, 2022

SCOPUSTM   
Citations

11
Last Week
0
Last month
1
checked on Jun 30, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.