TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions
 
Options

Effect of particle size and concentration on the synergistic UF membrane fouling by particles and NOM fractions

Publikationstyp
Journal Article
Date Issued
2013-06-21
Sprache
English
Author(s)
Tian, Jia Yu  
Ernst, Mathias  orcid-logo
Cui, Fuyi  
Jekel, Martin  
Institut
Wasserressourcen und Wasserversorgung B-11  
TORE-URI
http://hdl.handle.net/11420/6130
Journal
Journal of membrane science  
Volume
446
Start Page
1
End Page
9
Citation
Journal of Membrane Science (446): 1-9 (2013)
Publisher DOI
10.1016/j.memsci.2013.06.016
Scopus ID
2-s2.0-84880264570
Publisher
Elsevier
The fouling behavior of different NOM fractions in combination with two micro-particles (0.5-10. μm and ~45. μm) and one nano-particle (5-15. nm) on UF membrane was investigated. Three NOM models, Aldrich humic acid (HA), bovine serum albumin (BSA) and dextran (DEX) were employed as representatives of humic substances, proteins and polysaccharides in natural waters. For all the NOM models, a significant synergistic fouling effect was observed between the organic fraction and the two micro-particles, as evidenced by the proportional increase of fouling resistance with the increase of particle concentration from 10 to 50. mg/L. Whereas at higher particle concentration of 100. mg/L, the synergistic fouling resistance became balanced, or even decreased in comparison with that at 50. mg/L, indicating that there might be a critical concentration range for the micro-particles, in which the particles caused the most pronounced synergistic fouling effect with the NOM fractions. As for the nano-particle of 5-15. nm, much lower synergistic fouling resistance was observed as compared with that of the micro-particles for all the NOM models. This work highlighted the importance of particle size and particle concentration (i.e. mass ratio of particle/NOM) on the combined membrane fouling behavior for UF of natural waters. Besides, the interplay of different NOM fractions in the particle layer also played a crucial role in UF membrane fouling, as demonstrated by the much higher synergistic fouling resistance caused by the HA-BSA-DEX mixture in the presence of different particles, as compared with that by HA alone.
Subjects
Inorganic particle
NOM fractions
Synergistic membrane fouling
Ultrafiltration (UF) membrane
DDC Class
600: Technik
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback