Publisher DOI: 10.1016/
Title: Deep learning with 4D spatio-temporal data representations for OCT-based force estimation
Language: English
Authors: Gessert, Nils Thorben 
Bengs, Marcel 
Schlüter, Matthias 
Schlaefer, Alexander 
Keywords: 4D Data representations;4D Deep learning;Force estimation;Optical coherence tomography
Issue Date: Aug-2020
Source: Medical Image Analysis (64): 101730 - (2020-08)
Journal or Series Name: Medical image analysis 
Abstract (english): Estimating the forces acting between instruments and tissue is a challenging problem for robot-assisted minimally-invasive surgery. Recently, numerous vision-based methods have been proposed to replace electro-mechanical approaches. Moreover, optical coherence tomography (OCT) and deep learning have been used for estimating forces based on deformation observed in volumetric image data. The method demonstrated the advantage of deep learning with 3D volumetric data over 2D depth images for force estimation. In this work, we extend the problem of deep learning-based force estimation to 4D spatio-temporal data with streams of 3D OCT volumes. For this purpose, we design and evaluate several methods extending spatio-temporal deep learning to 4D which is largely unexplored so far. Furthermore, we provide an in-depth analysis of multi-dimensional image data representations for force estimation, comparing our 4D approach to previous, lower-dimensional methods. Also, we analyze the effect of temporal information and we study the prediction of short-term future force values, which could facilitate safety features. For our 4D force estimation architectures, we find that efficient decoupling of spatial and temporal processing is advantageous. We show that using 4D spatio-temporal data outperforms all previously used data representations with a mean absolute error of 10.7 mN. We find that temporal information is valuable for force estimation and we demonstrate the feasibility of force prediction.
ISSN: 1361-8415
Institute: Medizintechnische Systeme E-1 
Type: (wissenschaftlicher) Artikel
Appears in Collections:Publications without fulltext

Show full item record

Page view(s)

Last Week
Last month
checked on Jul 16, 2020

Google ScholarTM


Add Files to Item

Note about this record


Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.