DC FieldValueLanguage
dc.contributor.authorGessert, Nils Thorben-
dc.contributor.authorBengs, Marcel-
dc.contributor.authorSchlüter, Matthias-
dc.contributor.authorSchlaefer, Alexander-
dc.date.accessioned2020-06-05T07:15:31Z-
dc.date.available2020-06-05T07:15:31Z-
dc.date.issued2020-08-
dc.identifier.citationMedical Image Analysis (64): 101730 - (2020-08)de_DE
dc.identifier.issn1361-8415de_DE
dc.identifier.urihttp://hdl.handle.net/11420/6244-
dc.description.abstractEstimating the forces acting between instruments and tissue is a challenging problem for robot-assisted minimally-invasive surgery. Recently, numerous vision-based methods have been proposed to replace electro-mechanical approaches. Moreover, optical coherence tomography (OCT) and deep learning have been used for estimating forces based on deformation observed in volumetric image data. The method demonstrated the advantage of deep learning with 3D volumetric data over 2D depth images for force estimation. In this work, we extend the problem of deep learning-based force estimation to 4D spatio-temporal data with streams of 3D OCT volumes. For this purpose, we design and evaluate several methods extending spatio-temporal deep learning to 4D which is largely unexplored so far. Furthermore, we provide an in-depth analysis of multi-dimensional image data representations for force estimation, comparing our 4D approach to previous, lower-dimensional methods. Also, we analyze the effect of temporal information and we study the prediction of short-term future force values, which could facilitate safety features. For our 4D force estimation architectures, we find that efficient decoupling of spatial and temporal processing is advantageous. We show that using 4D spatio-temporal data outperforms all previously used data representations with a mean absolute error of 10.7 mN. We find that temporal information is valuable for force estimation and we demonstrate the feasibility of force prediction.en
dc.language.isoende_DE
dc.relation.ispartofMedical image analysisde_DE
dc.subject4D Data representationsde_DE
dc.subject4D Deep learningde_DE
dc.subjectForce estimationde_DE
dc.subjectOptical coherence tomographyde_DE
dc.titleDeep learning with 4D spatio-temporal data representations for OCT-based force estimationde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.englishEstimating the forces acting between instruments and tissue is a challenging problem for robot-assisted minimally-invasive surgery. Recently, numerous vision-based methods have been proposed to replace electro-mechanical approaches. Moreover, optical coherence tomography (OCT) and deep learning have been used for estimating forces based on deformation observed in volumetric image data. The method demonstrated the advantage of deep learning with 3D volumetric data over 2D depth images for force estimation. In this work, we extend the problem of deep learning-based force estimation to 4D spatio-temporal data with streams of 3D OCT volumes. For this purpose, we design and evaluate several methods extending spatio-temporal deep learning to 4D which is largely unexplored so far. Furthermore, we provide an in-depth analysis of multi-dimensional image data representations for force estimation, comparing our 4D approach to previous, lower-dimensional methods. Also, we analyze the effect of temporal information and we study the prediction of short-term future force values, which could facilitate safety features. For our 4D force estimation architectures, we find that efficient decoupling of spatial and temporal processing is advantageous. We show that using 4D spatio-temporal data outperforms all previously used data representations with a mean absolute error of 10.7 mN. We find that temporal information is valuable for force estimation and we demonstrate the feasibility of force prediction.de_DE
tuhh.publisher.doi10.1016/j.media.2020.101730-
tuhh.publication.instituteMedizintechnische Systeme E-1de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.volume64de_DE
tuhh.container.articlenumber101730de_DE
item.creatorGNDGessert, Nils Thorben-
item.creatorGNDBengs, Marcel-
item.creatorGNDSchlüter, Matthias-
item.creatorGNDSchlaefer, Alexander-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.creatorOrcidGessert, Nils Thorben-
item.creatorOrcidBengs, Marcel-
item.creatorOrcidSchlüter, Matthias-
item.creatorOrcidSchlaefer, Alexander-
item.fulltextNo Fulltext-
crisitem.author.deptMedizintechnische Systeme E-1-
crisitem.author.deptMedizintechnische Systeme E-1-
crisitem.author.deptMedizintechnische Systeme E-1-
crisitem.author.deptMedizintechnische Systeme E-1-
crisitem.author.orcid0000-0001-6325-5092-
crisitem.author.orcid0000-0002-2229-9547-
crisitem.author.orcid0000-0002-2019-1102-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

16
Last Week
1
Last month
2
checked on Aug 11, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.