Verlagslink DOI: 10.1063/1.4952286
Titel: Approximation of pseudospectra on a Hilbert space
Sprache: Englisch
Autor/Autorin: Schmidt, Torge 
Lindner, Marko  
Schlagwörter: Hilbert Space; Operator Theory; Pseudospectra
Erscheinungs­datum: 8-Jun-2016
Quellenangabe: AIP Conference (1738): 480050 (2016-06-08)
Zusammenfassung (englisch): 
The study of spectral properties of linear operators on an infinite-dimensional Hilbert space is of great interest. This task is especially difficult when the operator is non-selfadjoint or even non-normal. Standard approaches like spectral approximation by finite sections generally fail in that case. In this talk we present an algorithm which rigorously computes upper and lower bounds for the spectrum and pseudospectrum of such operators using finite-dimensional approximations. One of our main fields of research is an efficient implementation of this algorithm. To this end we will demonstrate and evaluate methods for the computation of the pseudospectrum of finite-dimensional operators based on continuation techniques.
Konferenz: AIP conference 2016 
URI: http://hdl.handle.net/11420/6249
ISBN: 978-073541392-4
Institut: Mathematik E-10 
Dokumenttyp: Kapitel (Konferenzband)
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

108
Letzte Woche
1
Letzten Monat
4
checked on 01.10.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.