DC FieldValueLanguage
dc.contributor.authorSchmidt, Torge-
dc.contributor.authorLindner, Marko-
dc.date.accessioned2020-06-05T12:39:55Z-
dc.date.available2020-06-05T12:39:55Z-
dc.date.issued2016-06-08-
dc.identifier.citationAIP Conference (1738): 480050 (2016-06-08)de_DE
dc.identifier.isbn978-073541392-4de_DE
dc.identifier.urihttp://hdl.handle.net/11420/6249-
dc.description.abstractThe study of spectral properties of linear operators on an infinite-dimensional Hilbert space is of great interest. This task is especially difficult when the operator is non-selfadjoint or even non-normal. Standard approaches like spectral approximation by finite sections generally fail in that case. In this talk we present an algorithm which rigorously computes upper and lower bounds for the spectrum and pseudospectrum of such operators using finite-dimensional approximations. One of our main fields of research is an efficient implementation of this algorithm. To this end we will demonstrate and evaluate methods for the computation of the pseudospectrum of finite-dimensional operators based on continuation techniques.en
dc.language.isoende_DE
dc.subjectHilbert Spacede_DE
dc.subjectOperator Theoryde_DE
dc.subjectPseudospectrade_DE
dc.titleApproximation of pseudospectra on a Hilbert spacede_DE
dc.typeinProceedingsde_DE
dc.type.dinicontributionToPeriodical-
dcterms.DCMITypeText-
tuhh.abstract.englishThe study of spectral properties of linear operators on an infinite-dimensional Hilbert space is of great interest. This task is especially difficult when the operator is non-selfadjoint or even non-normal. Standard approaches like spectral approximation by finite sections generally fail in that case. In this talk we present an algorithm which rigorously computes upper and lower bounds for the spectrum and pseudospectrum of such operators using finite-dimensional approximations. One of our main fields of research is an efficient implementation of this algorithm. To this end we will demonstrate and evaluate methods for the computation of the pseudospectrum of finite-dimensional operators based on continuation techniques.de_DE
tuhh.publisher.doi10.1063/1.4952286-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.drivercontributionToPeriodical-
dc.type.casraiConference Paper-
tuhh.container.volume1738de_DE
dc.relation.conferenceAIP conference 2016de_DE
tuhh.container.articlenumber480050de_DE
item.creatorGNDSchmidt, Torge-
item.creatorGNDLindner, Marko-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeinProceedings-
item.cerifentitytypePublications-
item.creatorOrcidSchmidt, Torge-
item.creatorOrcidLindner, Marko-
item.fulltextNo Fulltext-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0001-8483-2944-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

13
Last Week
2
Last month
0
checked on Aug 11, 2020

Google ScholarTM

Check

Add Files to Item

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.