Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.60
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.contributor.authorElssel, Kolja-
dc.date.accessioned2005-12-14T16:49:32Zde_DE
dc.date.available2005-12-14T16:49:32Zde_DE
dc.date.issued2004-12-
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/62-
dc.description.abstractSimulating numerically the sound radiation of rolling tires requires the solution of very large and sparse gyroscopic eigenvalue problems. Taking advantage of the automated multi–level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem, the solution of which however is still quite costly since the eigenmodes are non–real and complex arithmetic is necessary. This paper discusses the numerical solution of the AMLS approximation.en
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik:Bericht 85-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectEigenwertede_DE
dc.subjectgyroskopysches Eigenwertproblemde_DE
dc.subjectSubstrukturierungde_DE
dc.subjectnichtlineares Eigenwertproblemde_DE
dc.subjectMinmax Prinzipde_DE
dc.subjectEigenvaluesde_DE
dc.subjectAMLSde_DE
dc.subjectgyroscopic eigenproblemde_DE
dc.subjectsubstructuringde_DE
dc.subjectnonlinear eigenproblemde_DE
dc.subjectminmax characterizationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleSolving very large gyroscopic eigenproblems by Automated Multi-Level Substructuringde_DE
dc.typePreprintde_DE
dc.date.updated2005-12-16T11:42:59Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1155de_DE
dc.identifier.doi10.15480/882.60-
dc.type.dinipreprint-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1155de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id115de_DE
tuhh.gvk.ppn504753320-
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/62-
tuhh.abstract.englishSimulating numerically the sound radiation of rolling tires requires the solution of very large and sparse gyroscopic eigenvalue problems. Taking advantage of the automated multi–level substructuring (AMLS) method it can be projected to a much smaller gyroscopic problem, the solution of which however is still quite costly since the eigenmodes are non–real and complex arithmetic is necessary. This paper discusses the numerical solution of the AMLS approximation.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.60-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.id20-
tuhh.series.namePreprints des Institutes für Mathematik-
dc.type.driverpreprint-
dc.identifier.oclc930767820-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber85de_DE
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.seriesrefPreprints des Institutes für Mathematik;85-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.creatorOrcidVoß, Heinrich-
item.creatorOrcidElssel, Kolja-
item.creatorGNDVoß, Heinrich-
item.creatorGNDElssel, Kolja-
item.openairetypePreprint-
item.grantfulltextopen-
item.languageiso639-1en-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep85.pdf387,7 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

458
Last Week
0
Last month
9
checked on Nov 30, 2022

Download(s)

171
checked on Nov 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.