Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.61
Fulltext available Open Access
Publisher DOI: 10.1002/gamm.201490007
Title: Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
Language: English
Authors: Voß, Heinrich 
Mehrmann, Volker 
Keywords: matrix polynomial;projection method;Krylov-subspace method;Arnoldi method;rational-Krylov method;linearization;structure preservation
Issue Date: Jan-2004
Source: Preprint. Published in: GAMM Mitteilungen ; 27.2004, S.121-152
Part of Series: Preprints des Institutes für Mathematik 
Volume number: 83
Abstract (english): We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results.
URI: http://tubdok.tub.tuhh.de/handle/11420/63
DOI: 10.15480/882.61
Institute: Mathematik E-10 
Type: Report (Bericht)
License: In Copyright In Copyright
Appears in Collections:Publications with fulltext

Files in This Item:
File Description SizeFormat
rep83.pdf366,08 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

256
Last Week
0
Last month
8
checked on Sep 25, 2020

Download(s)

144
checked on Sep 25, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.