Verlagslink DOI: 10.1002/nla.1848
Titel: A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
Sprache: Englisch
Autor/Autorin: Meerbergen, Karl 
Schröder, Christian 
Voß, Heinrich 
Schlagwörter: Critical delay; Delay-differential equation; Jacobi-Davidson; Nonlinear eigenvalue problem; Two-parameter eigenvalue problem
Erscheinungs­datum: 9-Jul-2012
Verlag: Wiley
Quellenangabe: Numerical Linear Algebra with Applications 5 (20): 852-868 (2013-10-01)
Zusammenfassung (englisch): 
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real-valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large-scale problems, we propose new correction equations for a Newton-type or Jacobi-Davidson style method, which also forces real-valued critical delays. We present three different equations: one real-valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi-Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large-scale problems arising from PDEs. © 2012 John Wiley & Sons, Ltd.
URI: http://hdl.handle.net/11420/6302
ISSN: 1099-1506
Zeitschrift: Numerical linear algebra with applications 
Institut: Mathematik E-10 
Dokumenttyp: Artikel/Aufsatz
Projekt: Interuniversity Attraction Poles Program 
Weitere Förderungsinformationen: Belgian State Science Policy Office
Research Council K.U. Leuven
MATHEON, the DFG research Center in Berlin
Enthalten in den Sammlungen:Publications without fulltext

Zur Langanzeige

Seitenansichten

182
Letzte Woche
1
Letzten Monat
2
checked on 01.10.2022

SCOPUSTM   
Zitate

9
Letzte Woche
0
Letzten Monat
1
checked on 30.06.2022

Google ScholarTM

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz

Diesen Datensatz zitieren

Export

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.