TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Sintering Simulation of Periodic Macro Porous Alumina
 
Options

Sintering Simulation of Periodic Macro Porous Alumina

Publikationstyp
Journal Article
Date Issued
2015
Sprache
English
Author(s)
Besler, Robert  
Silva, Marcel Rossetti da  
Rosário, Jefferson J. do  
Dosta, Maksym  
Heinrich, Stefan  
Janßen, Rolf  
Institut
Mehrskalensimulation von Feststoffsystemen V-EXK1  
Keramische Hochleistungswerkstoffe M-9  
TORE-URI
http://hdl.handle.net/11420/6399
Journal
Journal of the American Ceramic Society  
Volume
98
Issue
11
Start Page
3496
End Page
3502
Citation
Journal of the American Ceramic Society 11 (98): 3496-3502 (2015)
Publisher DOI
10.1111/jace.13684
Scopus ID
2-s2.0-84946479940
Publisher
Wiley-Blackwell
Three-dimensionally ordered macroporous (3DOM) ceramic materials are considered for a variety of applications. One of its many subclasses, inverse opals, is constituted by the ordered arrangement of the pores, resulting in the functionality of a photonic crystal and leading to strong reflection of incident electromagnetic radiation. Exposing these porous structures to high temperatures, however, can lead to sintering of the desired structure and loss of functionality. Therefore, discrete element method (DEM) simulations are performed on inverse opal structures with random homogenous distributed alumina particles forming the struts and nodes. Grain-boundary diffusion as well as surface diffusion are modeled via respective parameters of a contact model applied in MUSEN-DEM. Furthermore, the void to particle size ratio is varied to simulate fine and coarse grained 3DOM ceramics. Results indicate that nodes densify at higher rates and to a larger extent when compared to struts. An increase in the void to particle size ratio results in similar trends but with lower densification rates. This behavior is observed regardless whether surface or grain-boundary diffusion is considered as the dominant transport mechanism, with the latter giving higher densification rates. Variations in particle coordination due to the initial random packing favor local desintering, thereby causing the formation of defects/crack nuclei.
DDC Class
530: Physik
Funding(s)
SFB 986: Teilprojekt A3 - Herstellung höherer hierarchischer Ebenen von Materialsystemen mit der Wirbelschicht-granulation und Diskrete-Elemente-Modellierung der Materialien  
SFB 986: Teilprojekt C4 - Deposition, Ordnung und mechanische Stabilität von Beschichtungen aus assemblierten Partikeln mit enger Größenverteilung  
SFB 986: Teilprojekt C5 - Oxidische Hochtemperatur-Schutzschichtsysteme mittels angepasster Porenstruktur  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback