Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2808
DC FieldValueLanguage
dc.contributor.authorRosário, Jefferson J. do-
dc.contributor.authorHäntsch, Quynh Yen-
dc.contributor.authorSchneider, Gerold A.-
dc.contributor.authorLilleodden, Erica-
dc.date.accessioned2020-06-25T05:41:09Z-
dc.date.available2020-06-25T05:41:09Z-
dc.date.issued2020-05-12-
dc.identifier.citationActa Materialia (195): 98-108 (2020-08-15)de_DE
dc.identifier.issn1359-6454de_DE
dc.identifier.urihttp://hdl.handle.net/11420/6408-
dc.description.abstractA relatively new class of tailored photonic metamaterials based on the inverse opal (IO) structure shows multifunctionality with exceptional mechanical response due to its periodic porous arch-like structure. Exploiting the smaller is stronger paradigm through varying its pore size and the addition of atomic layer deposition (ALD) films, allow tailorable strength and elastic modulus. Quantification of such properties are achieved through flat punch nanoindentation testing. Results are validated by comparison to microcompression tests, a widely used technique to circumvent the complex stress state normally imposed by indentation, but in the case of high porosity is greatly simplified, approximating uniaxial stress; results from both mechanical loading approaches show strong similarities. All results showed a dependence of strength and elastic modulus on the ratio of the deformation size, i.e., micropillar or flat punch diameter, to the pore size, a trend which is well described by the influence of the boundary conditions of the test method rather than an intrinsic size effect. At larger ratios the values approach a constant value. Furthermore, the mechanical response can be tailored through the deposition of a thin film on the shell structure of the silica IO structures; 34 nm of TiO2 was shown to produce a 10-fold increase in strength and 5-fold increase in elastic modulus.en
dc.description.sponsorshipFunded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer 192346071 SFB 986.de_DE
dc.language.isoende_DE
dc.publisherElsevier Sciencede_DE
dc.relation.ispartofActa materialiade_DE
dc.subjectMechanical propertiesde_DE
dc.subjectMetamaterialsde_DE
dc.subjectNanoindentationde_DE
dc.subjectPorousde_DE
dc.subject.ddc600: Technikde_DE
dc.titleA combined compression and indentation study of mechanical metamaterials based on inverse opal coatingsde_DE
dc.typeArticlede_DE
dc.identifier.doi10.15480/882.2808-
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.094835-
tuhh.oai.showtruede_DE
tuhh.abstract.englishA relatively new class of tailored photonic metamaterials based on the inverse opal (IO) structure shows multifunctionality with exceptional mechanical response due to its periodic porous arch-like structure. Exploiting the smaller is stronger paradigm through varying its pore size and the addition of atomic layer deposition (ALD) films, allow tailorable strength and elastic modulus. Quantification of such properties are achieved through flat punch nanoindentation testing. Results are validated by comparison to microcompression tests, a widely used technique to circumvent the complex stress state normally imposed by indentation, but in the case of high porosity is greatly simplified, approximating uniaxial stress; results from both mechanical loading approaches show strong similarities. All results showed a dependence of strength and elastic modulus on the ratio of the deformation size, i.e., micropillar or flat punch diameter, to the pore size, a trend which is well described by the influence of the boundary conditions of the test method rather than an intrinsic size effect. At larger ratios the values approach a constant value. Furthermore, the mechanical response can be tailored through the deposition of a thin film on the shell structure of the silica IO structures; 34 nm of TiO2 was shown to produce a 10-fold increase in strength and 5-fold increase in elastic modulus.de_DE
tuhh.publisher.doi10.1016/j.actamat.2020.04.025-
tuhh.publication.instituteKeramische Hochleistungswerkstoffe M-9de_DE
tuhh.identifier.doi10.15480/882.2808-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/de_DE
dc.type.casraiJournal Article-
tuhh.container.volume195de_DE
tuhh.container.startpage98de_DE
tuhh.container.endpage108de_DE
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeArticle-
item.creatorGNDRosário, Jefferson J. do-
item.creatorGNDHäntsch, Quynh Yen-
item.creatorGNDSchneider, Gerold A.-
item.creatorGNDLilleodden, Erica-
item.creatorOrcidRosário, Jefferson J. do-
item.creatorOrcidHäntsch, Quynh Yen-
item.creatorOrcidSchneider, Gerold A.-
item.creatorOrcidLilleodden, Erica-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.deptKeramische Hochleistungswerkstoffe M-9-
crisitem.author.orcid0000-0002-2749-0295-
crisitem.author.orcid0000-0001-5780-6249-
crisitem.author.orcid0000-0002-4014-0986-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
crisitem.author.parentorgStudiendekanat Maschinenbau-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
1-s2.0-S1359645420302822-main.pdfVerlags-PDF6,47 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

55
Last Week
7
Last month
checked on Jul 14, 2020

Download(s)

14
checked on Jul 14, 2020

Google ScholarTM

Check

Note about this record

Export

This item is licensed under a Creative Commons License Creative Commons