Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.2814
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorKastner, Marvin-
dc.contributor.authorScheidweiler, Tina-
dc.contributor.authorBurmeister, Hans-Christoph-
dc.date.accessioned2020-06-29T12:22:12Z-
dc.date.available2020-06-29T12:22:12Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/11420/6481-
dc.description.abstractIncreasing digitalization, rapid developments of machine learning and artificial intelligence as well as exponentially growing accumulation of data and automisation lead to new jobs in the areas of IT, data science and research. Likewise in the field of (maritime) logistics, digitalization is becoming increasingly important, resulting in an ever-increasing demand for trained personnel in the field of machine learning. One facilitator of maritime digitalization was the introduction of the Automated Identification System, which opened up a number of possibilities using machine learning in the maritime sector.en
dc.description.sponsorshipDeutschland, Bundesministerium für Bildung und Forschungde_DE
dc.language.isoende_DE
dc.subjectMachine learningde_DE
dc.subjectLogisticsde_DE
dc.subjectAutomated Information Systemde_DE
dc.subject.ddc600: Technikde_DE
dc.titleMALITUP : machine learning in theory and practicede_DE
dc.typePosterde_DE
dc.identifier.doi10.15480/882.2814-
dc.type.diniOther-
dcterms.DCMITypeImage-
tuhh.identifier.urnurn:nbn:de:gbv:830-882.095932-
tuhh.oai.showtruede_DE
tuhh.abstract.englishIncreasing digitalization, rapid developments of machine learning and artificial intelligence as well as exponentially growing accumulation of data and automisation lead to new jobs in the areas of IT, data science and research. Likewise in the field of (maritime) logistics, digitalization is becoming increasingly important, resulting in an ever-increasing demand for trained personnel in the field of machine learning. One facilitator of maritime digitalization was the introduction of the Automated Identification System, which opened up a number of possibilities using machine learning in the maritime sector.de_DE
tuhh.publication.instituteMaritime Logistik W-12de_DE
tuhh.identifier.doi10.15480/882.2814-
tuhh.type.opusPoster-
tuhh.gvk.hasppnfalse-
tuhh.hasurnfalse-
dc.type.driverother-
dc.type.casraiConference Poster-
dc.relation.projectMaLiTuP - Maschinelles Lernen in Theorie und Praxisde_DE
dc.rights.nationallicensefalsede_DE
local.status.inpressfalsede_DE
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypePoster-
item.creatorGNDKastner, Marvin-
item.creatorGNDScheidweiler, Tina-
item.creatorGNDBurmeister, Hans-Christoph-
item.creatorOrcidKastner, Marvin-
item.creatorOrcidScheidweiler, Tina-
item.creatorOrcidBurmeister, Hans-Christoph-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6670-
crisitem.author.deptMaritime Logistik W-12-
crisitem.author.deptMaritime Logistik W-12-
crisitem.author.deptMaritime Logistik W-12-
crisitem.author.orcid0000-0001-8289-2943-
crisitem.author.parentorgStudiendekanat Management-Wissenschaften und Technologie-
crisitem.author.parentorgStudiendekanat Management-Wissenschaften und Technologie-
crisitem.author.parentorgStudiendekanat Management-Wissenschaften und Technologie-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
20180320_MaLiTuP_Vorstellung.pdf413 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

57
Last Week
7
Last month
checked on Jul 14, 2020

Download(s)

16
checked on Jul 14, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.