TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. MALITUP : machine learning in theory and practice
 
Options

MALITUP : machine learning in theory and practice

Citation Link: https://doi.org/10.15480/882.2815
Publikationstyp
Conference Poster not in Proceedings
Date Issued
2019
Sprache
English
Author(s)
Kastner, Marvin  orcid-logo
Scheidweiler, Tina 
Institut
Maritime Logistik W-12  
TORE-DOI
10.15480/882.2815
TORE-URI
http://hdl.handle.net/11420/6482
Contribution to Conference
All-Hands-Meeting Machine Learning 2019  
Increasing digitalization, rapid developments in machine learning and exponentially growing accumulation of data lead to new jobs in the areas of data science. In the field of (maritime) logistics, digitalization is becoming increasingly important, resulting in an ever-increasing demand for trained personnel in the field of machine learning.
Subjects
Machine learning
Logistics
DDC Class
600: Technik
Funding(s)
MaLiTuP - Maschinelles Lernen in Theorie und Praxis  
More Funding Information
Deutschland, Bundesministerium für Bildung und Forschung
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

MaLiTuP_Vorstellung.pdf

Size

287.01 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback