Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.63
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.contributor.authorElssel, Kolja-
dc.date.accessioned2005-12-16T11:46:56Zde_DE
dc.date.available2005-12-16T11:46:56Zde_DE
dc.date.issued2004-09-
dc.identifier.citationPreprint. Published in: SIAM. J. Matrix Anal. & Appl., 28.2006,2, 386–397de_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/65-
dc.description.abstractThe Automated Multi-Level Substructuring (AMLS) method has been developed to reduce the computational demands of frequency response analysis and has recently been proposed as an alternative to iterative projection methods like Lanczos or Jacobi–Davidson for computing a large number of eigenvalues for matrices of very large dimension. Based on Schur complements and modal approximations of submatrices on several levels AMLS constructs a projected eigenproblem which yields good approximations of eigenvalues at the lower end of the spectrum. Rewriting the original problem as a rational eigenproblem of the same dimension as the projected problem, and taking advantage of a minmax characterization for the rational eigenproblem we derive an a priori bound for the AMLS approximation of eigenvalues.de
dc.language.isoende_DE
dc.relation.ispartofseriesPreprints des Institutes für Mathematik;Bericht 81-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectEigenvaluesde_DE
dc.subjectAMLSde_DE
dc.subjectsubstructuringde_DE
dc.subjectnonlinear eigenproblemde_DE
dc.subjectminmax characterizationde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleAn a priori bound for Automated Multi-Level Substructuringde_DE
dc.typePreprintde_DE
dc.date.updated2005-12-16T11:46:57Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1186de_DE
dc.identifier.doi10.15480/882.63-
dc.type.dinipreprint-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.ddccode510-
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msc65F50:Sparse matricesen
dc.subject.msccode65F15-
dc.subject.msccode65F50-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1186de_DE
tuhh.publikation.typpreprintde_DE
tuhh.opus.id118de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/65-
tuhh.abstract.germanThe Automated Multi-Level Substructuring (AMLS) method has been developed to reduce the computational demands of frequency response analysis and has recently been proposed as an alternative to iterative projection methods like Lanczos or Jacobi–Davidson for computing a large number of eigenvalues for matrices of very large dimension. Based on Schur complements and modal approximations of submatrices on several levels AMLS constructs a projected eigenproblem which yields good approximations of eigenvalues at the lower end of the spectrum. Rewriting the original problem as a rational eigenproblem of the same dimension as the projected problem, and taking advantage of a minmax characterization for the rational eigenproblem we derive an a priori bound for the AMLS approximation of eigenvalues.de_DE
tuhh.publisher.doi10.1137/040616097-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.63-
tuhh.type.opusPreprint (Vorabdruck)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id22de_DE
tuhh.gvk.hasppnfalse-
tuhh.series.namePreprints des Institutes für Mathematikde_DE
dc.type.driverpreprint-
dc.identifier.oclc930768121-
dc.type.casraiOther-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber81de_DE
dc.identifier.scopus2-s2.0-34247331484-
datacite.resourceTypeOther-
datacite.resourceTypeGeneralText-
item.seriesrefPreprints des Institutes für Mathematik;81-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypePreprint-
item.creatorOrcidVoß, Heinrich-
item.creatorOrcidElssel, Kolja-
item.languageiso639-1en-
item.creatorGNDVoß, Heinrich-
item.creatorGNDElssel, Kolja-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_816b-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.mappedtypePreprint-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik (E)-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep81.pdf307,56 kBAdobe PDFView/Open
Thumbnail
Show simple item record

Page view(s)

653
Last Week
1
Last month
8
checked on Dec 5, 2022

Download(s)

501
checked on Dec 5, 2022

SCOPUSTM   
Citations

28
Last Week
0
Last month
3
checked on Jun 30, 2022

Google ScholarTM

Check

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.