TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. A model-order reduction technique for low rank rational perturbations of linear eigenproblems
 
Options

A model-order reduction technique for low rank rational perturbations of linear eigenproblems

Citation Link: https://doi.org/10.15480/882.64
Publikationstyp
Conference Paper
Date Issued
2004-08
Sprache
English
Author(s)
Voß, Heinrich 
Blömeling, Frank  
Institut
Mathematik E-10  
TORE-DOI
10.15480/882.64
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/66
First published in
Preprints des Institutes für Mathematik  
Number in series
77
Citation
pp. 296-304 in J. Dongarra, K. Madsen, J. Wasniewski (eds.), PARA 2004
Large and sparse rational eigenproblems where the rational term is of low rank k arise in vibrations of fluid–solid structures and of plates with elastically attached loads. Exploiting model order reduction techniques, namely the Pad´e approximation via block Lanczos method, problems of this type can be reduced to k–dimensional rational eigenproblems which can be solved efficiently by safeguarded iteration.
Subjects
sparse rational eigenproblem
Lanczos method
model order reduction technique
DDC Class
510: Mathematik
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

rep77.pdf

Size

140.44 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback