Please use this identifier to cite or link to this item: https://doi.org/10.15480/882.66
Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.authorVoß, Heinrich-
dc.date.accessioned2005-12-16T11:20:30Zde_DE
dc.date.available2005-12-16T11:20:30Zde_DE
dc.date.issued2004-01-
dc.identifier.citationProc. XVth Summer School on Software and Alg. of Num Math., Hejnice, Czech Republikde_DE
dc.identifier.urihttp://tubdok.tub.tuhh.de/handle/11420/68-
dc.description.abstractThis paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods. We briefly sketch a new approach to structure preserving projection methods, but we do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.en
dc.language.isoende_DE
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectnonlinear eigenvalue problemde_DE
dc.subjectiterative projection methodde_DE
dc.subjectJacobi–Davidson methodde_DE
dc.subjectArnoldi methodde_DE
dc.subjectrational Krylov methodde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleNumerical methods for sparse nonlinear eigenvalue problemsde_DE
dc.typeinProceedingsde_DE
dc.date.updated2005-12-16T11:20:32Zde_DE
dc.identifier.urnurn:nbn:de:gbv:830-opus-1213de_DE
dc.identifier.doi10.15480/882.66-
dc.type.dinicontributionToPeriodical-
dc.subject.gndNichtlineares Eigenwertproblemde
dc.subject.gndProjektionsverfahrende
dc.subject.gndIterationde
dc.subject.gndKrylov-Verfahrende
dc.subject.ddccode510-
dc.subject.msc35P30:Nonlinear eigenvalue problems, nonlinear spectral theory for PDOen
dc.subject.msc65F15:Eigenvalues, eigenvectorsen
dc.subject.msccode35P30-
dc.subject.msccode65F15-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:830-opus-1213de_DE
tuhh.publikation.typconferenceObjectde_DE
tuhh.publikation.sourceProc. XVth Summer School on Software and Alg. of Num Math., Hejnice, Czech Republikde_DE
tuhh.opus.id121de_DE
tuhh.oai.showtruede_DE
dc.identifier.hdl11420/68-
tuhh.abstract.englishThis paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods. We briefly sketch a new approach to structure preserving projection methods, but we do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.de_DE
tuhh.publication.instituteMathematik E-10de_DE
tuhh.identifier.doi10.15480/882.66-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.institute.germanMathematik E-10de
tuhh.institute.englishMathematics E-10en
tuhh.institute.id47de_DE
tuhh.type.id16de_DE
tuhh.gvk.hasppnfalse-
dc.type.drivercontributionToPeriodical-
dc.identifier.oclc930768186-
dc.type.casraiConference Paper-
tuhh.relation.ispartofseriesPreprints des Institutes für Mathematikde_DE
tuhh.relation.ispartofseriesnumber70de_DE
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeinProceedings-
item.seriesrefPreprints des Institutes für Mathematik;70-
item.cerifentitytypePublications-
item.creatorOrcidVoß, Heinrich-
item.fulltextWith Fulltext-
item.tuhhseriesidPreprints des Institutes für Mathematik-
item.creatorGNDVoß, Heinrich-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
crisitem.author.deptMathematik E-10-
crisitem.author.orcid0000-0003-2394-375X-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications with fulltext
Files in This Item:
File Description SizeFormat
rep70.pdf344,58 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

233
Last Week
0
Last month
0
checked on Oct 19, 2020

Download(s)

118
checked on Oct 19, 2020

Google ScholarTM

Check

Note about this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.