TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Application of damped cylindrical spreading to assess range to injury threshold for fishes from impact pile driving
 
Options

Application of damped cylindrical spreading to assess range to injury threshold for fishes from impact pile driving

Publikationstyp
Journal Article
Date Issued
2020-07-01
Sprache
English
Author(s)
Ainslie, Michael A.  
Halvorsen, Michele  
Müller, Roel A. J.  
Lippert, Tristan  
Institut
Modellierung und Berechnung M-16  
TORE-URI
http://hdl.handle.net/11420/7034
Journal
The journal of the Acoustical Society of America  
Volume
148
Issue
1
Start Page
108
Citation
The Journal of the Acoustical Society of America 1 (148): 108 (2020-07-01)
Publisher DOI
10.1121/10.0001443
Scopus ID
2-s2.0-85089133162
PubMed ID
32752788
Environmental risk assessment for impact pile driving requires characterization of the radiated sound field. Damped cylindrical spreading (DCS) describes propagation of the acoustic Mach cone generated by striking a pile and predicts sound exposure level (LE) versus range. For known water depth and sediment properties, DCS permits extrapolation from a measurement at a known range. Impact assessment criteria typically involve zero-to-peak sound pressure level (Lp,pk), root-mean-square sound pressure level (Lp,rms), and cumulative sound exposure level (LE,cum). To facilitate predictions using DCS, Lp,pk and Lp,rms were estimated from LE using empirical regressions. Using a wind farm construction scenario in the North Sea, DCS was applied to estimate ranges to recommended thresholds in fishes. For 3500 hammer strikes, the estimated LE,cum impact ranges for mortal and recoverable injury were up to 1.8 and 3.1 km, respectively. Applying a 10 dB noise abatement measure, these distances reduced to 0.29 km for mortal injury and 0.65 km for recoverable injury. An underlying detail that produces unstable results is the averaging time for calculating Lp,rms, which by convention is equal to the 90%-energy signal duration. A stable alternative is proposed for this quantity based on the effective signal duration.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback