DC FieldValueLanguage
dc.contributor.authorSander, Oliver-
dc.contributor.authorSchiela, Anton-
dc.date.accessioned2020-08-14T10:05:04Z-
dc.date.available2020-08-14T10:05:04Z-
dc.date.issued2013-12-19-
dc.identifier.citationZeitschrift fur Angewandte Mathematik und Physik 6 (65): 1261-1288 (2013)de_DE
dc.identifier.issn1420-9039de_DE
dc.identifier.urihttp://hdl.handle.net/11420/7049-
dc.description.abstract© 2013, Springer Basel. We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.en
dc.language.isoende_DE
dc.publisherSpringer International Publishing AGde_DE
dc.relation.ispartofZeitschrift für angewandte Mathematik und Physikde_DE
dc.subject.ddc510: Mathematikde_DE
dc.titleVariational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuumde_DE
dc.typeArticlede_DE
dc.type.diniarticle-
dcterms.DCMITypeText-
tuhh.abstract.english© 2013, Springer Basel. We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.de_DE
tuhh.publisher.doi10.1007/s00033-013-0389-y-
tuhh.publication.instituteMathematik E-10de_DE
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.type.driverarticle-
dc.type.casraiJournal Article-
tuhh.container.issue6de_DE
tuhh.container.volume65de_DE
tuhh.container.startpage1261de_DE
tuhh.container.endpage1288de_DE
dc.identifier.scopus2-s2.0-84920252421de_DE
local.status.inpressfalsede_DE
datacite.resourceTypeJournal Article-
datacite.resourceTypeGeneralText-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDSander, Oliver-
item.creatorGNDSchiela, Anton-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.creatorOrcidSander, Oliver-
item.creatorOrcidSchiela, Anton-
item.languageiso639-1en-
item.mappedtypeArticle-
crisitem.author.deptMathematik E-10-
crisitem.author.parentorgStudiendekanat Elektrotechnik, Informatik und Mathematik-
Appears in Collections:Publications without fulltext
Show simple item record

Page view(s)

98
Last Week
0
Last month
0
checked on Aug 15, 2022

SCOPUSTM   
Citations

2
Last Week
0
Last month
0
checked on Jul 11, 2022

Google ScholarTM

Check

Add Files to Item

Note about this record

Cite this record

Export

Items in TORE are protected by copyright, with all rights reserved, unless otherwise indicated.