TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Laser cutting of carbon fiber-reinforced plastic with an absorber transparent for visible spectrum
 
Options

Laser cutting of carbon fiber-reinforced plastic with an absorber transparent for visible spectrum

Publikationstyp
Journal Article
Date Issued
2015-08-01
Sprache
English
Author(s)
Canisius, Marten  
Herzog, Dirk  orcid-logo
Schmidt-Lehr, Matthias  
Oberlander, Max  
Direnga, Julie  
Emmelmann, Claus  orcid-logo
Institut
Laser- und Anlagensystemtechnik G-2  
TORE-URI
http://hdl.handle.net/11420/7112
Journal
Journal of laser applications  
Volume
27
Issue
3
Article Number
032003
Citation
Journal of Laser Applications 3 (27): 032003 (2015-08-01)
Publisher DOI
10.2351/1.4916532
Scopus ID
2-s2.0-84927771949
Mass production of carbon fiber-reinforced plastic parts has lately started in the automotive industry. Due to no abrasive wear in combination with a high degree of automation and ability for 3D processing, laser remote cutting is a suitable method for machining purposes in this context. In the automotive environment, solid-state lasers are favored because optical waveguides may then be used. In turn, the low absorption of the radiation of such lasers in the matrix material presents a drawback in terms of comparatively large heat affected zones (HAZ) and flaking at the cutting kerf. This paper deals with the question, if a laser absorbing additive can be used to enhance the absorption within the matrix material, while the optical properties in the visible spectrum are kept. For this purpose, an additive known from laser transmission welding has been added to the matrix material. Cutting experiments have been carried out while varying concentration of the additive. The investigations show that a significant reduction of the mean HAZ of 25% and the standard deviation (1 σ) of 56% can be achieved by adding 4% w/w of the additive to the resin. In addition to that, the flaking behavior can be avoided. Compared to adding soot particles, the optical properties of the laminate do not change in the visible spectrum, leaving the fiber textile visible.
Subjects
absorber
CFRP
cutting
fiber-reinforced
heat affected zone
laser
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback